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Retarded functional differential equations (RFDEs) form a wide class of evo-
lution equations which share the property that, at any point, the rate of the
solution depends on a discrete or distributed set of values attained by the
solution itself in the past. Thus the initial problem for RFDEs is an infinite-
dimensional problem, taking its theoretical and numerical analysis beyond
the classical schemes developed for differential equations with no functional
elements. In particular, numerically solving initial problems for RFDEs is a
difficult task that cannot be founded on the mere adaptation of well-known
methods for ordinary, partial or integro-differential equations to the presence
of retarded arguments. Indeed, efficient codes for their numerical integration
need specific approaches designed according to the nature of the equation and
the behaviour of the solution.

By defining the numerical method as a suitable approximation of the solu-
tion map of the given equation, we present an original and unifying theory for
the convergence and accuracy analysis of the approximate solution. Two par-
ticular approaches, both inspired by Runge–Kutta methods, are described.
Despite being apparently similar, they are intrinsically different. Indeed, in
the presence of specific types of functionals on the right-hand side, only one
of them can have an explicit character, whereas the other gives rise to an
overall procedure which is implicit in any case, even for non-stiff problems.

In the panorama of numerical RFDEs, some critical situations have been
recently investigated in connection to specific classes of equations, such as the
accurate location of discontinuity points, the termination and bifurcation of
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the solutions of neutral equations, with state-dependent delays, the regular-
ization of the equation and the generalization of the solution behind possible
termination points, and the treatment of equations stated in the implicit form,
which include singularly perturbed problems and delay differential-algebraic
equations as well. All these issues are tackled in the last three sections.

In this paper we have not considered the important issue of stability, for
which we refer the interested reader to the comprehensive book by Bellen and
Zennaro (2003).
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1. Introduction

In this paper, we present methods for numerically solving the Cauchy prob-
lem, or initial problem (IP), for the very general retarded functional differ-
ential equation (RFDE)

y′(t) = F (t, yt), (1.1)

where y is an R
d-valued function of a real variable, F : R × X → R

d, X
being a subset of the set C of the continuous functions (−∞, 0] → R

d, and,
according to the Hale–Krasovski notation, yt ∈ X is given by

yt(ϑ) = y(t+ ϑ), ϑ ∈ (−∞, 0].

The set X is called the data set of the RFDE (1.1) and the function yt is
called the state at time t, since, under minimal assumptions, it uniquely
determines the future evolution y(s), s ≥ t.
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In order to define the IP for RFDEs, we must associate to (1.1) an initial
point t0 ∈ R and initial data φ ∈ X. The resulting problem takes the form

y′(t) = F (t, yt), t ≥ t0,

yt0 = φ,
(1.2)

where the function φ ∈ X represents the initial state of the system.
Equation (1.1), also called the Volterra functional differential equation,

provides a powerful tool for modelling many phenomena in applied math-
ematics and, in the literature, is often referred to by different terminology,
such as time delay system, hereditary system, system with memory , system
with after-effect , etc.

There are many kinds of RFDEs characterized by the action of the func-
tional F on the state yt. In particular, we include in (1.1) the neutral
functional differential equations, where F also acts on the derivative of the
state yt, i.e.,

F (t, yt) = G(t, yt, y
′
t).

In any case, they are all evolution systems which share the property that,
at any t, the dynamic depends not only on the current value y(t), but also on
a discrete or distributed set of values of the solution y in the past. This fact,
together with the need for an initial function rather than an initial value,
makes the theoretical analysis, as well as the numerical approximation of the
IP (1.2), much more complicated than the initial value problem for ordinary
differential equations it formally resembles.

The general theory of RFDEs is widely developed, and we refer the reader
to the classical books by Bellman and Cooke (1963), El’sgol’ts and Norkin
(1973), Hale (1977), Driver (1977), Kolmanovskii and Nosov (1986), Kol-
manovskii and Myshkis (1992), Hale and Verduyn Lunel (1993), Kuang
(1993) and Diekmann, van Gils, Verduyn Lunel and Walther (1995), which
also include many real-life examples of RFDEs and more general retarded
functional differential equations.

As for the numerics, apart from some isolated earlier papers, the analysis
of numerical methods for RFDEs started in the early 1960s. Since then, spe-
cific methods have been separately developed by adapting the well-known
methods for ordinary differential equations to the presence of delays. An
exhaustive collection of methods and related references up to the beginning
of 1970s was given by Cryer (1972). Other papers reporting the state of the
art for general or particular classes of RFDEs appeared from time to time
in the subsequent decades. In particular, Bellen (1985) and Meinardus and
Nürnberger (1985) surveyed papers up to the 1980s, followed by Zennaro
(1995), Baker, Paul and Willé (1995a, 1995b) and Baker (1996, 2000) up to
the publication of the monograph by Bellen and Zennaro (2003), which was
the first book completely devoted to the numerical analysis of the Cauchy
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problem for differential equations with delays. After some historical re-
marks on theoretical and numerical methods for RFDEs, the book provides
a detailed analysis of continuous Runge–Kutta (RK) methods (A, b(θ), c),
in view of their application in the following general procedure, called the
standard approach, for IPs of the form

y′(t) = F̂ (t, y(t), yt, y
′
t), t ≥ t0,

yt0 = φ,
(1.3)

where F̂ explicitly separates the dependence on y(t) from that on yt.
Given a mesh ∆ = {t0, t1, . . . , tn, . . .}, the standard approach for (1.3)

consists in solving step by step, by means of a continuous RK method, the
local problems

w′
n+1(t) = F̂

(
t, wn+1(t), xt, x

′
t

)
, tn ≤ t ≤ tn+1,

wn+1(tn) = yn,
(1.4)

where

x(s) =


φ(s− t0) for s ≤ t0,

η(s) for t0 ≤ s ≤ tn,

wn+1(s) for tn ≤ s ≤ tn+1,

and η(s) is the continuous approximate solution computed by the method
itself up to tn.

The philosophy underlying the standard approach consists in considering
(1.3) as an ODE, where the states xt and x′t, acting as forcing terms, are
virtually known and given by the approximate solution itself, either having
been or to be computed. It is clear that this approach relies on the availabil-
ity of a continuous numerical method , that is, a numerical method which
provides a continuous approximate solution. It is also clear that, whenever
the right-hand side functional in (1.4) requires values of the functions x and
x′ at some points lying in the current interval, the method becomes implicit
even if the underlying RK method is explicit. This makes the procedure
more suited for stiff problems, for which the RK method is itself expected
to be implicit. The standard approach, even before being so-named, was the
most widely adopted method for RFDEs in the literature from the 1970s to
the 1990s, also using continuous approximations other than continuous RK
methods. In particular, for continuous RK methods, significant results on
convergence, variable step-size implementation and stability analysis were
achieved. A detailed presentation of such results up to 2002 is available in
Bellen and Zennaro (2003), along with an exhaustive bibliography.

Since the publication of Bellen and Zennaro (2003), important work on
the numerical solution of RFDEs has appeared. Part of it was devoted
to further analyses of specific problems using well-known and consolidated
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techniques, especially as far as stability issues are concerned (see Wang and
Li (2004) and the book by Kuang and Cong (2005)). Another part was
devoted to developing new methods and to tackling some topics that, due
to their more intrinsic difficulty, had not yet been well investigated, namely
equations of neutral type and equations with state-dependent delays.

This paper, rather than reporting the state of the art, aims at providing,
in an original and unifying approach, results on well-posedness and the error
analysis of different numerical schemes based on continuous RK methods for
as large as possible classes of RFDEs. The paper also reports some recent
results on specific issues that needed, and still need, further investigation.
In particular, we consider the termination and bifurcation of the solution at
some critical point for RFDEs of neutral type, with state-dependent delays
and the possible generalization of the solution beyond such points as well.

The paper is organized as follows. In Section 2 we provide some partic-
ular classes of RFDEs together with suitable data sets X, where they are
naturally defined and where the true and the approximate solutions will be
sought. For other classes of RFDEs and bibliographic references, see also
Brunner (2004).

In Section 3 we analyse a specific phenomenon, typical of RFDEs, which
is not present in ordinary differential equations, namely the appearance of
so-called discontinuity points, often called breaking points. These originate
in the possible lack of continuity in the derivative of the solution of (1.1) at
the initial point t0, that is,

φ′−(0) �= y′(t0)+ = F (t0, φ).

This event implies that the solution, as defined in the forthcoming Defini-
tion 1.1, must be considered in the ‘almost everywhere’ sense.

In Section 4 we provide a short review of existence and uniqueness results
for the solutions of the various classes of equations considered in Section 2.
In order to do that, it is essential to establish what we actually mean by a
solution of (1.2) in a right neighbourhood of t0.

Definition 1.1. Let T > 0. A solution of (1.2) on (−∞, t0 + T ] is a
continuous function y : (−∞, t0 + T ] → R

d such that:

• yt ∈ X for all t ∈ [t0, t0 + T ];
• the function t �→ F (t, yt), t ∈ [t0, t0 + T ], is measurable and bounded;
• for all t ∈ (−∞, t0 + T ], we have

y(t) =

{
φ(0) +

∫ t
t0
F (s, ys) ds if t ∈ [t0, t0 + T ],

φ(t− t0) if t ∈ (−∞, t0].

Note that the third condition in the above definition is equivalent to
requiring that y is differentiable almost everywhere in [t0, t0 + T ], y′(t) =
F (t, yt) for almost all t ∈ [t0, t0 + T ] and yt0 = φ.
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In Section 5 we develop an original and unifying approach which allows
us to analyse well-posedness and convergence for most of the methods de-
veloped so far for the whole class of equations stated in the form (1.2).

Sections 6, 7 and 8 are devoted to the construction and accuracy analysis
of two classes of methods, both based on suitable continuous RK methods
(A, b(θ), c), for which the continuous approximation η(s) is given step by
step, by

η(tn+θhn+1) = yn+hn+1

ν∑
i=1

bi(θ)F
(
tin+1, Ytin+1

, Y ′
tin+1

)
, 0 ≤ θ ≤ 1, (1.5)

for the problem (1.2), and by

η(tn + θhn+1) = yn +hn+1

ν∑
i=1

bi(θ)F̂
(
tin+1, Y

i
n+1, Ytin+1

, Y ′
tin+1

)
, 0 ≤ θ ≤ 1,

(1.6)
for the class of problems in the form (1.3).

The stages Y i
n+1 in (1.6) are the classical stage values of the RK method,

whereas the stages Ytin+1
in (1.5) and (1.6) are states and the two methods

differ from each other in how they are defined.
In Section 6 we consider the first class of methods, called functional

continuous Runge–Kutta (FCRK) methods and denoted by (A(θ), b(θ), c),
where, for each i, the stage Ytin+1

is a polynomial determined by the coef-
ficients aij(θ). A particular class of FCRK methods based on a predictor–
corrector version of the collocation method, proposed by Tavernini (1971),
is reported as a prototype of the class. Although FCRK methods seem the
most natural and direct way to extend RK formulas to RFDEs (1.1), they
were neglected for a long time and have been investigated, in their general
form, only recently; see the error analysis by Maset, Torelli and Vermiglio
(2005). The merit of such a class of methods is that, contrary to the stan-
dard approach, they are available in explicit form when values of yt or y′t
are required at points of the current integration step. In this section the
methods are introduced and their well-posedness, proved by Maset (2009),
is reported.

In Section 7 the error analysis and order conditions are developed for
the class of FCRK methods and explicit schemes of order up to four are
constructed.

In Section 8 we consider the second class of methods, namely the standard
approach based on continuous RK methods as described in (1.4) for initial
problems of the form (1.3). In this case all the states Ytin+1

are given by the
same function η, i.e., Ytin+1

= ηtin+1
for all i. The numerical analysis of this

approach is now consolidated and available in the cited book by Bellen and
Zennaro (2003). Here we report some general results on the discrete and
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uniform order of continuous RK methods and on the corresponding methods
for the solution of (1.3). These results also serve as a background for the
subsequent sections, where only the standard approach is considered.

In Section 9 we address some implementation problems arising in the use
of the standard approach, in connection with the accurate computation of
the breaking points. In particular, we face the paradoxical situation caused
by the state-dependent delays, where the accuracy in the calculation of a
breaking point depends on the accuracy of the approximate solution used
to detect it, which, in turn, depends on the accuracy of the same breaking
point we are trying to locate. The strategy adopted in the earlier and in
the last releases of the code RADAR5 by Guglielmi and Hairer (2001, 2008)
is described with details and numerical comparisons.

In Section 10 we consider RFDEs of neutral type with state-dependent
delays for which the derivative of the solution is discontinuous at the initial
point t0, that is,

φ′−(0) �= y′(t0)+ = G(t0, φ, φ′).

Such an inequality produces a sequence of breaking points where, the delay
being state-dependent, the solution may either cease to exist or bifurcate.
These occurrences are investigated from both the theoretical and numerical
point of view. Possible regularizations of the equation, leading to weak
(or generalized) solutions defined beyond such termination and bifurcation
points, are proposed and compared.

Finally, in Section 11, we address our attention to a special class of state-
dependent problems in the implicit form

M u′(t) = F
(
u(t), u

(
α(u(t))

))
,

where the matrix M is constant, and possibly singular. Besides includ-
ing neutral state-dependent RFDEs, such problems also include singularly
perturbed problems and a variety of delay differential-algebraic equations.
Since these problems often have a stiff character, they usually need to be
integrated by an implicit method, and therefore a Newton or quasi-Newton
iterative process is needed. The efficient implementation of such iterations
is investigated in detail in the case of overlapping.

2. Some particular RFDEs

Now we introduce some particular and important RFDEs (1.1). In our
presentation, we divide the RFDEs into two classes defined by different
data sets and corresponding to non-neutral and neutral types.

Let us first consider RFDEs (1.1) with data set X = C.

• Delay differential equations (DDEs):

y′(t) = f
(
t, y(t), y(t− τ1(t)), . . . , y(t− τs(t))

)
, (2.1)
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where f : R × R
d × (Rd)s → R

d and τi : R → [0,+∞), i = 1, . . . , s.
The functions τi, i = 1, . . . , s, are called delays. For such equations, the
functional F in (1.1) is given by

F (t, ϕ) = f
(
t, ϕ(0), ϕ(−τ1(t)), . . . , ϕ(−τs(t))

)
, (t, ϕ) ∈ R × C. (2.2)

• Delay integro-differential equations (DIDEs):

y′(t) = f

(
t, y(t),

∫ t−τ2(t)

t−τ1(t)
k(t, t− s, y(s)) ds

)
, (2.3)

where f : R×R
d × R

d → R
d, τ1, τ2 : R → [0,+∞) and k : R×(0,+∞) ×

R
d → R

d. The functions τi, i = 1, 2, are the delays and the function k is
called the kernel. The functional F takes the form

F (t, ϕ) = f

(
t, ϕ(0),

∫ −τ2(t)

−τ1(t)
k(t,−ϑ, ϕ(ϑ)) dϑ

)
, (t, ϕ) ∈ R × C. (2.4)

We assume that:

(K) The kernel k is measurable and, for some norm | · | on R
d, for any

bounded subset B of R × R
d, the function MB given by

MB(ϑ) = sup
(t,y)∈B

|k(t,−ϑ, y)|, ϑ ∈ (−∞, 0),

is locally integrable.

Under assumption (K), the integral in (2.4) exists and is finite for any
(t, ϕ) ∈ R×C. Such an assumption is satisfied if the kernel is continuous
or weakly singular, i.e.,

k(t, x, y) = x−α · a(t, x, y), (t, x, y) ∈ R×(0,+∞) × R
d,

or
k(t, x, y) = log x · a(t, x, y), (t, x, y) ∈ R×(0,+∞) × R

d,

where α ∈ [0, 1) and a : R×[0,+∞) × R
d → R

d is continuous.

Other RFDEs (1.1) with data set C are DDEs and DIDEs, where the
delays also depend on the value y(t).

• State-dependent delay differential equations (SDDDEs):

y′(t) = f
(
t, y(t), y

(
t− τ1(t, y(t))

)
, . . . , y

(
t− τs(t, y(t))

))
, (2.5)

where τi : R × R
d → [0,+∞), i = 1, . . . , s, and

F (t, ϕ) = f
(
t, ϕ(0), ϕ

(
−τ1(t, ϕ(0))

)
, . . . , ϕ

(
−τs(t, ϕ(0))

))
, (2.6)

for (t, ϕ) ∈ R × C.
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• State-dependent delay integro-differential equations (SDDIDEs):

y′(t) = f

(
t, y(t),

∫ t−τ2(t,y(t))

t−τ1(t,y(t))
k(t, t− s, y(s)) ds

)
, (2.7)

where τ1, τ2 : R × R
d → [0,+∞) and

F (t, ϕ) = f

(
t, ϕ(0),

∫ −τ2(t,ϕ(0))

−τ1(t,ϕ(0))
k(t,−ϑ, ϕ(ϑ)) dϑ

)
, (t, ϕ) ∈ R × C.

Another possible choice of the data set X is the set LC of the locally
Lipschitz-continuous functions (−∞, 0] → R

d, which are known to be dif-
ferentiable almost everywhere. For ϕ ∈ LC, by defining

ϕ′(ϑ) =
1
2

(
lim sup

h→0

ϕ(ϑ+ h) − ϕ(ϑ)
h

+ lim inf
h→0

ϕ(ϑ+ h) − ϕ(ϑ)
h

)
at any point ϑ ∈ (−∞, 0], the derivative ϕ′ belongs to the set B of the
measurable and locally bounded functions (−∞, 0] → R

d.
Particular RFDEs (1.1) with the data set LC are the neutral functional

differential equations (NFDEs),

y′(t) = G(t, yt, y
′
t), (2.8)

where G : R × C × B → R
d and the functional F in (1.1) is given by

F (t, ϕ) = G(t, ϕ, ϕ′), (t, ϕ) ∈ R × LC.

Particular examples of NFDEs are as follows.

• Neutral delay differential equations (NDDEs):

y′(t) = f
(
t, y(t), y(t− τ1(t)), . . . , y(t− τs(t)),

y′(t− τ∗1 (t)), . . . , y′(t− τ∗s∗(t))
)
, (2.9)

where f : R × R
d × (Rd)s × (Rd)s∗ → R

d, τi : R → [0,+∞), i = 1, . . . , s,
and τ∗i : R → [0,+∞), i = 1, . . . , s∗. The functional G in (2.8) is given by

G(t, ϕ, ψ) = f
(
t, ϕ(0), ϕ(−τ1(t)), . . . , ϕ(−τs(t)),

ψ(−τ∗1 (t)), . . . , ψ(−τ∗s∗(t))
)
,

for (t, ϕ, ψ) ∈ R × C × B.

• Neutral delay integro-differential equations (NDIDEs):

y′(t) = f

(
t, y(t),

∫ t−τ2(t)

t−τ1(t)
k
(
t, t− s, y(s), y′(s)

)
ds

)
, (2.10)
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where f : R × R
d × R

d → R
d, τ1, τ2 : R → [0,+∞) and k : R×(0,+∞) ×

R
d × R

d → R
d. The functional G takes the form

G(t, ϕ, ψ) = f

(
t, ϕ(0),

∫ −τ2(t)

−τ1(t)
k
(
t,−ϑ, ϕ(ϑ), ψ(ϑ)

)
dϑ

)
,

for (t, ϕ, ψ) ∈ R × C × B.

As for the non-neutral case, we assume that:

(NK) The kernel k is measurable, and, for some norm | · | on R
d, for any

bounded subset B of R × R
d × R

d, the function MB given by

MB(ϑ) = sup
(t,y,z)∈B

|k(t,−ϑ, y, z)|, ϑ ∈ (−∞, 0),

is locally integrable.

Other RFDEs with data set LC are NDDEs and NDIDEs with state-
dependent delays.

• Neutral state-dependent delay differential equations (NSDDDEs):

y′(t) = f
(
t, y(t), y

(
t− τ1(t, y(t))

)
, . . . , y

(
t− τs(t, y(t))

)
,

y′
(
t− τ∗1 (t, y(t))

)
, . . . , y′

(
t− τ∗s∗(t, y(t))

))
, (2.11)

where τi : R × R
d → [0,+∞), i = 1, . . . , s, τ∗i : R × R

d → [0,+∞),
i = 1, . . . , s∗, and

G(t, ϕ, ψ) = f
(
t, ϕ(0), ϕ

(
−τ1(t, ϕ(0))

)
, . . . , ϕ

(
−τs(t, ϕ(0))

)
,

ψ
(
−τ∗1 (t, ϕ(0))

)
, . . . , ψ

(
−τ∗s∗(t, ϕ(0))

))
,

for (t, ϕ, ψ) ∈ R × C × B.

• Neutral state-dependent delay integro-differential equations
(NSDDIDEs):

y′(t) = f

(
t, y(t),

∫ t−τ2(t,y(t))

t−τ1(t,y(t))
k
(
t, t− s, y(s), y′(s)

)
ds

)
, (2.12)

where τ1, τ2 : R × R
d → [0,+∞) and

G(t, ϕ, ψ) = f

(
t, ϕ(0),

∫ −τ2(t,ϕ(0))

−τ1(t,ϕ(0))
k
(
t,−ϑ, ϕ(ϑ), ψ(ϑ)

)
dϑ

)
, (2.13)

for (t, ϕ, ψ) ∈ R × C × B.
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3. Discontinuity points and vanishing delays

In this section we describe two particular situations caused by the presence
of two kinds of points: those where some derivative of the solution is not
continuous and those where the delay vanishes.

3.1. Discontinuity points

In this section we briefly analyse the propagation of discontinuity points,
also called breaking points, for the derivatives of the solution of (1.2) along
the integration interval.

In order to illustrate this phenomenon, for the sake of simplicity we confine
ourselves to the particular class of DDEs,

y′(t) = f
(
t, y(t), y

(
t− τ(t, y(t))

))
, t0 ≤ t ≤ t0 + T,

y(t) = φ(t), t ≤ t0,
(3.1)

and NDDEs,

y′(t) = f
(
t, y(t), y

(
t− τ(t, y(t))

)
, y′

(
t− τ(t, y(t))

))
, t0 ≤ t ≤ t0 + T,

y(t) = φ(t), t ≤ t0. (3.2)

First consider equation (3.1) and assume that the deviated argument

α(t) = t− τ(t, y(t))

satisfies α(t) < t0 for some points t ∈ [t0, t0 + T ]. Moreover, assume that
the solution y(t) does not link smoothly to the initial function φ(t) at t0,
that is,

φ′(t0)− �= y′(t0)+ = f
(
t0, φ(t0), φ(α(t0))

)
.

If the functions f , φ and α are continuous, then it is obvious that y′(t)
is also continuous for any t > t0. On the other hand, if f , φ and α are
differentiable, then y′′(t) exists for any t except for the points ξ1,i(> t0)
such that

α(ξ1,i) = t0

and
α′(ξ1,i) �= 0,

i.e., for the simple roots, if any, of the equation

α(t) = t0.

In fact, for any smooth function f(t, y, x) we can formally write

y′′(t)± =
∂f

∂t

(
t, y(t), y(α(t))

)
+
∂f

∂y

(
t, y(t), y(α(t))

)
y′(t)

+
∂f

∂x

(
t, y(t), y(α(t))

)
y′(α(t))±α′(t), (3.3)
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and hence

y′′(ξ1,i)+ =
∂f

∂t

(
ξ1,i, y(ξ1,i), y(t0)

)
+
∂f

∂y

(
ξ1,i, y(ξ1,i), y(t0)

)
y′(ξ1,i)

+
∂f

∂x

(
ξ1,i, y(ξ1,i), y(t0)

)
y′(t0)+α′(ξ1,i) (3.4)

and

y′′(ξ1,i)− =
∂f

∂t

(
ξ1,i, y(ξ1,i), y(t0)

)
+
∂f

∂y

(
ξ1,i, y(ξ1,i), y(t0)

)
y′(ξ1,i)

+
∂f

∂x

(
ξ1,i, y(ξ1,i), y(t0)

)
φ′(t0)−α′(ξ1,i). (3.5)

Since α′(ξ1,i) �= 0 and φ′(t0)− is assumed to be different from y′(t0)+, y′′
does not exist at ξ1,i and its prolongation by y′′(ξ1,i) = y′′(ξ1,i)+ has a jump
discontinuity at ξ1,i.

These jump discontinuities in y′′ are called 1-level primary discontinu-
ities. By differentiating (3.3), one easily checks that each 1-level primary
discontinuity point ξ1,i gives rise in turn to 2-level primary discontinuities
in y′′′ at any point ξ2,j(> ξ1,i) which is a simple root of

α(t) = ξ1,i for some i.

In general, any k-level primary discontinuity point ξk,i gives rise to (k+1)-
level primary discontinuities in y(k+2) at subsequent points ξk+1,j , where the
solution of (3.1) becomes increasingly smooth as the primary discontinuity
level increases. This increase in the regularity of y(t) will be referred to as
smoothing of the solution.

Definition 3.1. Every point where some derivative y(s) jumps will be
called a discontinuity point or breaking point. We also say that a break-
ing point ξ has order k if the solution is Ck-continuous at ξ. In particular,
by k = −1 we mean that the solution is discontinuous at ξ.

On the contrary, the same argument applied to (3.2) reveals that, for
neutral DDEs, smoothing does not occur and, in general, the solution re-
mains C0-continuous at any primary discontinuity point where the deriva-
tive y′ jumps. This motivates the weaker definition of the solution in the
‘almost everywhere’ sense given in Definition 1.1. Obviously, if the splicing
condition

φ′(t0)− = y′(t0)+ = f
(
t0, φ(t0), φ(α(t0))

)
holds, no discontinuities propagate from t0 and the solution is meant in the
classical sense.

It is also remarkable that, if α(t) ≥ t0 for all t ≥ t0, then no values of y
and/or y′ are needed in (3.1) and (3.2) behind t0 and, therefore, no primary
discontinuities propagate from t0.
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Other discontinuities can appear if the functions f , τ and φ in (3.1) and
(3.2) have some discontinuities with respect to t in some of their derivatives.
Then such discontinuities are also propagated by the deviated argument
α(t), according to the primary discontinuity propagation rule, and are called
secondary discontinuities.

From the numerical point of view, it is important to analyse how the dis-
continuity points propagate through the integration interval [t0, t0 +T ], and
how smoothness possibly increases at any discontinuity point with respect
to its ancestor , the discontinuity point from which it originates. In fact, it is
known that every step-by-step numerical method for initial value problems
(IVPs) achieves its own accuracy order provided that the solution is suffi-
ciently smooth at each step interval [tn, tn+1]. More precisely, for a method
to be of order p, we usually ask the solution to be at least Cp+1-continuous
on [tn, tn+1]. Therefore, discontinuity points of a suitable level ought to be
included in the mesh.

To finish with, we briefly consider the difficulties related to the case when
the delay τ(t, y(t)) is state-dependent. In order to locate the discontinuities,
one should in principle apply the general propagation rule

ξk,j − τ
(
ξk,j , y(ξk,j)

)
= ξk−1,i for some i, (3.6)

and solve it for ξk,j . Because the delay is dependent on y(t), this cannot
be done a priori without any knowledge of the solution. Moreover, it is
evident that, even assuming some approximation of y(t) is available, we
must be satisfied with an approximation of the discontinuity point ξk,j .

In conclusion, the impossibility of locating the discontinuity points a pri-
ori makes the implementation and convergence analysis of numerical meth-
ods for (3.1) and (3.2) a rather complicated task, which will be further
investigated in Section 9.

For a more detailed analysis of the propagation of discontinuity points
in systems of DDEs with different delays we refer the reader to Bellen and
Zennaro (2003) and the references therein.

3.2. Non-vanishing delays

The theoretical analysis of (1.2) for the classes of RFDEs considered in
Section 2, as well as the development of numerical methods for its approx-
imate solution, is considerably simplified if the problem reduces to a finite
sequence of IVPs for ordinary differential equations (ODEs) on any interval
[t0, t0 + T ]. In order to characterize such an occurrence, let us consider the
following condition on a delay τ .

(H∗
1 ) There exists a constant τ0 > 0 such that τ(t) ≥ τ0 for all t ∈ R or, for

state-dependent delays, τ(t, z) ≥ τ0 for all t ∈ R and z ∈ R
d.
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 α α = t

α = t− τ(t)

α = t− τ(t)

tt∗

Figure 3.1. An example of a vanishing delay satisfying condition (HH∗
1 ).

A delay satisfying the condition (H∗
1 ) is said to be non-vanishing ; otherwise

it is called vanishing. It is evident that if all the delays in the given equation
are non-vanishing, then the IP reduces on any interval to a finite sequence
of IVPs for ODEs.

However, to be non-vanishing is not a necessary condition for the delays
in order to reduce the problem to a finite sequence of ordinary ones. In fact,
this occurs if and only if any delay τ fulfils this weaker condition.

(HH∗
1 ) For any σ ∈ R and T > 0, there exist σ0, σ1, . . . , σK−1, σK such that

σ = σ0 < σ1 < · · · < σK−1 < σK = σ + T

and

t− τ(t) ≤ σk, t ∈ [σk, σk+1], and k = 0, 1, . . . ,K − 1,

or

t− τ(t, z) ≤ σk, t ∈ [σk, σk+1], z ∈ R
d and k = 0, 1, . . . ,K − 1,

in the case of a state-dependent delay.

A delay τ satisfying (HH∗
1 ) is called weakly non-vanishing. A delay which

is not weakly non-vanishing is called strongly vanishing. An example of a
vanishing delay which is weakly non-vanishing is τ(t) = t − [t], where [·]
denotes the greatest integer function. Such a delay occurs in some retarded
differential real-life models (see Cooke and Wiener (1984)). On the other
hand, an example of a vanishing delay τ which is strongly vanishing is
depicted in Figure 3.1, where τ(t∗) = 0. For an equation involving such a
delay, an IP (1.2) with t0 < t∗ may reduce to a finite sequence of IVPs for
ODEs only on intervals [t0, t0 + T ] where t0 + T < t∗.
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Whether or not the problem is reducible to a sequence of IVPs for ODEs
is reflected in the different hypotheses required for the existence and unique-
ness of the solution.

Two significant cases of equations involving a strongly vanishing delay
are the classical Volterra equation

y′(t) = f

(
t, y(t),

∫ t

0
k(t, t− s, y(s)) ds

)
, t ≥ 0,

and the pantograph equation

y′(t) = f(t, y(t), y(qt)), t ≥ 0, 0 < q < 1.

The former corresponds to equation (2.3), with τ1(t) = t and τ2(t) = 0 at
any point t; the latter corresponds to (2.1), with τ1(t) = (1 − q)t, which
equals zero only at t = 0.

4. Existence and uniqueness

Now, for the different types of RFDEs we give conditions under which the
IP (1.2) has a unique local solution, that is, there exists T > 0 such that the
IP has a unique solution on (−∞, t0 +T ]. Most of the results of this and the
next section are taken from Maset (2009). To this end, we let LT denote the
linear space L∞([0, T ],Rd), i.e., the linear space of the equivalence classes
of the Lebesgue-measurable and essentially bounded functions [0, T ] → R

d,
and let L�

T be the linear space of the Lebesgue-measurable and bounded
functions [0, T ] → R

d. Note that L�
T can be embedded in LT by identifying

any function with its equivalence class.
Moreover, we assume the data set X satisfies the following assumptions.

(DS1) For any ϕ ∈ X and s ∈ (−∞, 0], we have ϕs ∈ X.

(DS2) For any ϕ ∈ X, T > 0 and z ∈ LT , we have v(ϕ, z)T ∈ X, where
v(ϕ, z) : (−∞, T ] → R

d is the continuous function given by

v(ϕ, z)(t) =

{
ϕ(0) +

∫ t
0 z(s) ds if t ∈ [0, T ],

ϕ(t) if t ∈ (−∞, 0].
(4.1)

Since assumption (DS1) holds, we also have

v(ϕ, z)t =
(
v(ϕ, z)T

)
t−T

∈ X, t ≤ T, (4.2)

in (DS2).
It is clear that both data sets C and LC satisfy (DS1) and (DS2).
Finally, as well as assumptions (DS1) and (DS2) on the data set, we as-

sume that the RFDE (1.1) satisfies the following Boundedness Assumption.
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(BA) For any σ ∈ R, ϕ ∈ X, T > 0 and z ∈ LT , the function

t �→ F
(
σ + t, v(ϕ, z)t

)
, t ∈ [0, T ],

belongs to L�
T .

For the various types of RFDEs presented above, the assumption (BA)
holds under minimal conditions. This is stated in the following two propo-
sitions.

Proposition 4.1. An NSDDDE (an NDDE) satisfies property (BA) if:

• the function f is measurable and locally bounded;
• the delays τj , j = 1, . . . , s, and τ∗j , j = 1, . . . , s∗, are measurable and

locally bounded.

An analogous proposition holds for SDDDEs and DDEs (which are not
particular NSDDDEs or NDDEs, since the data set for the former is larger).

Proposition 4.2. An NSDDIDE (an NDIDE) satisfies property (BA) if:

• the function f is measurable and locally bounded;
• the delays τj , j = 1, 2, are measurable and locally bounded;
• the kernel k satisfies assumption (NK).

A similar proposition holds for SDDIDEs and DIDEs.
Since the Boundedness Assumption holds, for given σ ∈ R, ϕ ∈ X and

T > 0, we can introduce the map

QT (σ, ϕ) : LT → L�
T

defined by[
QT (σ, ϕ)(z)

]
(t) = F

(
σ + t, v(ϕ, z)t

)
, t ∈ [0, T ] and z ∈ LT . (4.3)

For the analysis of the numerical methods introduced in the next section,
it is useful to introduce the map

Q�
T (σ, ϕ) = QT (σ, ϕ)|CT

: CT → L�
T , (4.4)

where CT is the subspace of LT (and of L�
T ) of the continuous functions.

In the following, we consider QT (σ, ϕ) as a map LT → LT by embedding
L�

T in LT .
There is a link between the map QT (t0, φ) and a solution of (1.2) on

(−∞, t0 + T ], which is given in the following basic theorem.

Theorem 4.1. Let y : (−∞, t0 + T ] → R
d and let x be the shift function

given by
x(t) = y(t0 + t), t ∈ (−∞, T ]. (4.5)
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The function y is a solution of the IP (1.2) on (−∞, t0 + T ] if and only if

x = v(φ, z∗)

for some fixed point z∗ of the map QT (t0, φ).

Proof. Let y : (−∞, t0 + T ] → R
d be a solution of the IP (1.2). Then the

shift function x is continuous, xt ∈ X for all t ∈ [0, T ], the function

z∗(t) = F (t0 + t, xt), t ∈ [0, T ],

belongs to L�
T (and, then, to LT ) and, for t ∈ (−∞, T ], we have

x(t) =

{
φ(0) +

∫ t
0 F (t0 + s, xs) ds if t ∈ [0, T ],

φ(t) if t ∈ (−∞, 0]

= v(φ, z∗)(t).

Since [
QT (t0, φ)(z∗)

]
(t) = F

(
t0 + t, v(φ, z∗)t

)
= F (t0 + t, xt) = z∗(t), t ∈ [0, T ],

z∗ turns out to be a fixed point of the map QT (t0, φ).
Vice versa, let z∗ ∈ LT be a fixed point of the map QT (t0, φ), and let

x(t) = v(φ, z∗)(t), t ∈ (−∞, T ].

The function x is continuous, xt = v(φ, z∗)t ∈ X for all t ∈ [0, T ] (recall
(4.2)), the function

t �→ F (t0 + t, xt) = F
(
t0 + t, v(φ, z∗)t

)
, t ∈ [0, T ],

belongs to L�
T by the Boundedness Assumption, and, for t ∈ (−∞, T ], we

have

x(t) = v(φ, z∗)(t)
= v

(
φ,QT (t0, φ)(z∗)

)
(t)

=

{
φ(0) +

∫ t
0

[
QT (t0, φ)(z∗)

]
(s) ds if t ∈ [0, T ],

φ(t) if t ∈ (−∞, 0]

=

{
φ(0) +

∫ t
0 F

(
t0 + s, v(φ, z∗)t

)
(s) ds if t ∈ [0, T ],

φ(t) if t ∈ (−∞, 0]

=

{
φ(0) +

∫ t
0 F (t0 + s, xs) ds if t ∈ [0, T ],

φ(t) if t ∈ (−∞, 0].

Hence,
y(t) = x(t− t0), t ∈ (−∞, t0 + T ],

is a solution of (1.2) on (−∞, t0 + T ].
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By the previous result, it is clear that there exists a unique solution
of (1.2) on (−∞, t0 + T ] if and only if the map QT (t0, φ) has a unique
fixed point.

The reduction of the problem of existence and uniqueness of a solution
on (−∞, t0 + T ] to the existence and uniqueness of fixed points of the map
QT (t0, φ) allows us to prove the following theorems.

Theorem 4.2. Consider a DDE (2.1). If:

• the function f(t, y0, y1, . . . , ys) is measurable, locally bounded, locally
Lipschitz-continuous with respect to the argument y0 and locally Lip-
schitz-continuous with respect to those arguments yj , j = 1, . . . , s, such
that the delay τj is strongly vanishing;

• the delays τj , j = 1, . . . , s, are measurable and locally bounded;

then any IP (1.2) for the DDE has a unique local solution ∀φ ∈ C.

Theorem 4.3. Consider an SDDDE (2.5). If:

• the function f(t, y0, y1, . . . , ys) is measurable, locally bounded and locally
Lipschitz-continuous with respect to any argument yj , j = 0, 1, . . . , s;

• the delays τj(t, y), j = 1, . . . , s, are measurable, locally bounded and
locally Lipschitz-continuous with respect to the argument y;

then any IP (1.2) for the SDDDE has a unique local solution ∀φ ∈ LC.

Theorem 4.4. Consider an NDDE (2.9). If:

• the function f(t, y0, y1, . . . , ys, z1, . . . , zs∗) is measurable, locally bounded,
locally Lipschitz-continuous with respect to the argument y0, locally
Lipschitz-continuous with respect to those arguments yj , j = 1, . . . , s,
such that the delay τj is strongly vanishing, and globally Lipschitz-con-
tinuous of constant lj with respect to those arguments zj , j = 1, . . . , s∗,
such that the delay τ∗j is strongly vanishing;

• ∑
j=1,...,s∗

τ∗
j is strongly vanishing

lj < 1;

• the delays τj , j = 1, . . . , s, are measurable and locally bounded;
• the delays τ∗j , j = 1, . . . , s∗, are measurable, locally bounded and each

strongly vanishing delay τ∗j is such that:

– for each σ ∈ R, there exists T ∗ > 0 such that, for any subset A of
(0, T ∗] of zero measure, the set{

t ∈ [0, T ∗] | t− τ∗j (σ + t) ∈ A
}

has measure zero;
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then any IP (1.2) for the NDDE has a unique local solution ∀φ ∈ LC.

It is remarkable that, in order to obtain an existence theorem for the more
restricted class of NSDDDEs, it is not sufficient to impose simultaneously
the conditions required in the previous theorems for the DDEs with state-
dependent delay and of neutral type. In fact, the following theorem, besides
considering more restrictive conditions on the functional F , requires addi-
tional specific conditions on the initial function depending on the functional
itself.

Theorem 4.5. Consider an NSDDDE (2.11). If:

• the function f(t, y0, y1, . . . , ys, z1, . . . , zs∗) is measurable, locally bounded
and locally Lipschitz-continuous with respect to the arguments yj , j =
0, 1, . . . , s and zj , j = 1, . . . , s∗;

• the delays τj(t, y), j = 1, . . . , s, are measurable, locally bounded and
locally Lipschitz-continuous with respect to the argument y;

• the delays τ∗j (t, y), j = 1, . . . , s∗, are weakly non-vanishing, measurable,
locally bounded and locally Lipschitz-continuous with respect to the ar-
gument y;

then any IP (1.2) for the NSDDDE has a unique local solution ∀φ ∈
LC1, LC1 being the set of continuously differentiable functions with locally
Lipschitz-continuous derivative, provided φ satisfies the splicing condition

ϕ′(0) = f
(
t0, ϕ(0), ϕ(−τ1(t0)), . . . , ϕ(−τs(t0)),

ϕ′(−τ∗1 (t0)), . . . , ϕ′(−τ∗s∗(t0))
)
. (4.6)

Now we consider integro-differential equations.

Theorem 4.6. Consider an NDIDE (2.3). If:

• the function f(t, y0, y1) is measurable, locally bounded, locally Lipschitz-
continuous with respect to the argument y0 and, if τ1 or τ2 is strongly van-
ishing, also locally Lipschitz-continuous with respect to the arguments y1;

• the delays τ1 and τ2 are measurable and locally bounded;

• the kernel k satisfies assumption (NK) and, if τ1 or τ2 is strongly vanish-
ing, also the assumption:

(NK1) There exists T̂ > 0 such that, for any bounded subset B of R ×
R

d × R
d, the Lipschitz constants

θ �→ sup
(t,y1,z)∈B
(t,y2,z)∈B

y1 �=y2

|k(t,−θ, y1, z) − k(t,−θ, y2, z)|
|y1 − y2|

, θ ∈ [−T̂ , 0),
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and

θ �→ sup
(t,y,z1)∈B
(t,y,z2)∈B

z1 �=z2

|k(t,−θ, y, z1) − k(t,−θ, y, z2)|
|z1 − z2|

, θ ∈ [−T̂ , 0),

are integrable;

then any IP (1.2) for the NDIDE has a unique local solution ∀φ ∈ LC.

Theorem 4.7. Consider an NSDDIDE (2.12). If:

• the function f(t, y0, y1) is measurable, locally bounded, locally Lipschitz-
continuous with respect to the arguments y0 and y1;

• the delays τ1(t, y) and τ2(t, y) are measurable, locally bounded and locally
Lipschitz-continuous with respect to the argument y;

• the kernel k(t, θ, y, z) satisfies conditions (NK), (NK1) and:

(NK2) For any bounded subset B of R×R
d×R

d, the functionMB defined
in assumption (NK) is essentially locally bounded on the images
τj(R × R

d), j = 1, 2;

then any IP (1.2) for the NSDDIDE has a unique local solution ∀φ ∈ LC.

Analogous theorems are valid for DIDEs and SDDIDEs by replacing as-
sumption (NK) with (K) and by modifying assumptions (NK1) and (NK2)
in an obvious way. Note that for RFDEs of integral type the existence and
uniqueness of the solution is achieved in their own data set.

4.1. The solution map

In the foregoing theorems we have seen that existence and uniqueness of
the local solutions is not always guaranteed for any initial data in the data
set. In particular, when the delay is state-dependent, the existence and
uniqueness is guaranteed on a restriction of the data set, namely LC for
SDDDEs and the subset of LC1 satisfying the splicing conditions (4.6) for
NSDDDEs.

Therefore, it is worth introducing the concept of state set , as the subset of
the data set for which the local solution uniquely exists and can be prolonged
to a maximal solution.

Definition 4.1. A subset Y of the data set X is called a state set if, for
any t0 ∈ R and φ ∈ Y , the IP (1.2) has a unique local solution y, defined
on (−∞, t0 + T ], and yt ∈ Y holds for all t ∈ [t0, t0 + T ].

If Y is a state set for the RFDE (1.1), then, for any σ ∈ R and ϕ ∈ Y , the
IP (1.2) with t0 = σ and φ = ϕ has a unique local solution. Such a solution
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can be prolonged to a unique maximal solution y(σ, ϕ) : (−∞, σ+ Tmax) →
R

d, where Tmax = Tmax(σ, ϕ) ∈ (0,+∞].
Summarizing, under the conditions stated in the previous theorems, we

have the following state sets for the various classes of RFDEs:

• the set C is a state set for DDEs, DIDEs and SDDIDEs,

• the set LC is a state set for SDDDEs, NDDEs, NDIDEs, and NSDDIDEs,

• the subset of LC1 satisfying the splicing condition (4.6) is the state set
for NSDDDEs.

The solution map for the RFDE is the map V associating the state

V (σ, ϕ, T ) = y(σ, ϕ)σ+T ∈ Y

at the point σ + T to the triple (σ, ϕ, T ), where σ ∈ R, ϕ ∈ Y and T ∈
[0, Tmax(σ, ϕ)). This state determines the future states y(σ, ϕ)σ+T+∆, where
∆ ∈ [0, Tmax(σ, ϕ) − T ), by

V (σ, ϕ, T + ∆) = V
(
σ + T, V (σ, ϕ, T ),∆

)
.

We can conclude this section by the following basic proposition based on
Theorem 4.1.

Proposition 4.3. The solution map can be expressed as

V (σ, ϕ, T ) = v
(
ϕ, z∗(σ, ϕ, T )

)
T
, (4.7)

where v(·, ·) is defined in (4.1) and z∗(σ, ϕ, T ) is the unique fixed point of
the map QT (σ, ϕ) defined in (4.3).

5. Numerical methods for RFDEs

A numerical method for a RFDE with state set Y provides a map Ṽ ap-
proximating the solution map V . More precisely, the map Ṽ associates
data

Ṽ (σ, ϕ, h) ∈ Y

approximating the state V (σ, ϕ, h) to the triple (σ, ϕ, h), where σ ∈ R,
ϕ ∈ Y and h ∈ [0, Hmax(σ, ϕ)). Here, the third argument of Ṽ is denoted
by h and not by T , since it has the meaning of step-size in the integra-
tion process described below. Moreover, note that its definition domain is
[0, Hmax(σ, ϕ)), which can be different from the definition domain of the
third argument T of V .

We deal with the problem of the computation of the solution y = y(t0, φ)
of the IP (1.2), where φ ∈ Y , on the integration window [t0, t0 + T ], where
T ∈ (0, Tmax(t0, φ)). We refer to it as the integration problem (t0, φ, T ).
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When a numerical method providing a map Ṽ is applied to the integration
problem (t0, φ, T ) with the mesh

∆ =
{
tn | n = 0, 1, 2, . . . , N∆

}
, t0 < t1 < t2 < · · · < tN∆

= t0 + T, (5.1)

it yields the finite sequence of states

{φn}n=0,1,2,...,N∆
,

where φn ∈ Y is an approximation of the exact state ytn at the mesh point
tn, given by the recursion

φn+1 = Ṽ (tn, φn, hn+1), n = 0, 1, . . . , N∆ − 1,
φ0 = φ.

(5.2)

Here, hn+1 = tn+1 − tn is the (n + 1)th step-size and satisfies hn+1 ∈
[0, Hmax(tn, φn)). Note that the sequence

{ytn}n=0,1,2,...,N∆

of the exact states satisfies the recursion

ytn+1 = V (tn, ytn , hn+1), n = 0, 1, . . . , N∆ − 1,
yt0 = φ.

In this paper we consider numerical methods such that

Ṽ (σ, ϕ, h) = v
(
ϕ, z̃∗(σ, ϕ, h)

)
h

(5.3)

(recall Proposition 4.3), where z̃∗(σ, ϕ, h) ∈ L�
h is a suitable function ap-

proximating the fixed point z∗(σ, ϕ, h) of the map Qh(σ, ϕ). We define the
local error functions e(σ, ϕ, h) and E(σ, ϕ, h) at (σ, ϕ) with step-size h by

e(σ, ϕ, h) = z̃∗(σ, ϕ, h) − z∗(σ, ϕ, h) (5.4)

and

E(σ, ϕ, h) =
(
v
(
ϕ, z̃∗(σ, ϕ, h)

)
− v

(
ϕ, z∗(σ, ϕ, h)

))
|[0,h]

= v
(
0, e(σ, ϕ, h)

)
|[0,h]

=
∫
e(σ, ϕ, h), (5.5)

where, for z ∈ Lh,
∫
z denotes the primitive of z, i.e.,(∫

z

)
(t) =

∫ t

0
z(s) ds, t ∈ [0, h].

5.1. Convergence analysis

Now, we tackle the study of the error in the numerical solution of integration
problems by a numerical method providing approximations of type (5.3).
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To this end, we consider:

• a norm | · | on R
d;

• a norm on the spaces L�
h and Ch ⊆ L�

h,

‖z‖ = sup
t∈[0,T ]

|z(t)|, z ∈ L�
h.

We consider an integration problem (t0, φ, T ) and the numerical compu-
tation of the solution y = y(t0, φ) on the integration window [t0, t0 + T ]
given by the process (5.2). Since we need to measure the error between the
states ytn and the approximated states φn, n = 1, 2, . . . , N∆, we introduce
the distance

d(ϕ,ψ) = sup
θ∈(−∞,0]

|ϕ(θ) − ψ(θ)| ∈ [0,+∞]

between two data ϕ,ψ ∈ C.
Note that, for n = 0, 1, . . . , N∆ − 1, we have

φn = (φn+1)−hn+1 and ytn = (ytn+1)−hn+1

and then
d(φn, ytn) ≤ d(φn+1, ytn+1).

Hence, we define
E(∆) = d(φN∆

, yt0+T )

the global error in the numerical solution of the integration problem (t0, φ, T )
with mesh ∆. As we will see below, the global error is linked to the local
errors at the mesh points

En+1(∆) = ‖E(tn, ytn , hn+1)‖,
E0

n+1(∆) = |E(tn, ytn , hn+1)(hn+1)|, (5.6)
en+1(∆) = ‖e(tn, ytn , hn+1)‖,

where n = 0, 1, . . . , N∆ − 1.
Our aim is to study the infinitesimal order of E(∆) as h∆ → 0, where

h∆ = max
n=1,2,...,N∆

hn

is the maximum step-size in the mesh ∆.
In the next definition, we introduce the concept of global order of the

given numerical method for RFDEs.

Definition 5.1. Let r be a positive integer and let F be a family of in-
tegration problems (t0, φ, T ) such that y(t0, φ)|[t0,t0+T ] is piecewise smooth
(i.e., piecewise Cm for some positive integer m). The method has global
order r on F if, for any integration problem (t0, φ, T ) ∈ F , we have

E(∆k) = O(hr
∆(k)), k → +∞,
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for any sequence {∆(k)} of meshes on [t0, t0 + T ] such that

h∆(k) → 0, k → +∞,

and, for any k, ∆(k) includes all the breaking points of y(t0, φ)|[t0,t0+T ].

Now, we distinguish between RFDEs with data set C and RFDEs with
data set LC.

RFDEs with data set C
For RFDEs with data set C, we introduce the concepts of uniform order and
discrete order of the given method.

Definition 5.2. Let q be a positive integer and let F be a family of inte-
gration problems (t0, φ, T ) for which y(t0, φ)|[t0,t0+T ] is piecewise smooth.
The method has uniform order q on F if, for any integration problem
(t0, φ, T ) ∈ F , there exist constants H > 0 and C > 0 such that

‖E(t, yt, h)‖ ≤ Chq+1,

for any t ∈ [t0, t0 + T ) and h ∈ [0, Hmax(t, yt)) such that h ≤ T − t, and the
interval (t, t+ h) does not contain breaking points of y(t0, φ) and h < H.

Definition 5.3. Let p be a positive integer and let F be a family of inte-
gration problems (t0, φ, T ) for which y(t0, φ)|[t0,t0+T ] is piecewise smooth.
The method has discrete order p on F if, for any integration problem
(t0, φ, T ) ∈ F , there exist constants H > 0 and C > 0 such that

|E(t, yt, h)(h)| ≤ Chp+1,

for any t ∈ [t0, t0 + T ) and h ∈ [0, Hmax(t, yt)) such that h ≤ T − t, and the
interval (t, t+ h) does not contain breaking points of y(t0, φ) and h < H.

In order to link the uniform and discrete orders to the global order, we
introduce the concept of stability of the method.

Definition 5.4. Let F be a family of integration problems (t0, φ, T ). The
method is stable on F if, for any integration problem (t0, φ, T ), there exist
δ > 0, H > 0 and L ≥ 0 such that

H ≤ Hmax(t, ϕ), t ∈ [t0, T0 + T ),

and
‖z̃(t, ϕ, h) − z̃(t, yt, h)‖ ≤ L · d(ϕ, yt), h ∈ [0, H).

for any t ∈ [t0, t0 + T ) and ϕ ∈ Y such that d(ϕ, yt) ≤ δ.

Here is the convergence theorem for RFDEs with data set C.

Theorem 5.1. (Convergence) Consider the numerical solution of in-
tegration problems given by the recursive process (5.2) and assume that
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the numerical method is of type (5.3). Let F be a family of integration
problems. If the method has uniform order q, discrete order p and it is
stable on F , then it has global order q′ = min{q + 1, p} on F .

Proof. Consider the numerical solution of an integration problem (t0, φ, T )
belonging to the family F . Let {∆(k)} be a sequence of meshes (with mesh
points t(k)

n , n = 0, 1, . . . , N∆(k) , and step-sizes h(k)
n+1, n = 0, 1, . . . , N∆(k) − 1)

such that h∆(k) → 0, k → ∞.
Let K0 be such that

h∆(k) ≤ H, k ≥ K0,

where H is given in Definition 5.4. Hence, for k ≥ K0, we have

h
(k)
n+1 ≤ H ≤ Hmax

(
t(k)
n , y

t
(k)
n

)
, n = 0, 1, . . . , N∆(k) − 1,

and so the local errors in (5.6) are defined.
Now, we prove the following relations for the errors.

(i) If
max

n=1,...,N
∆(k)

En(∆(k)) → 0, k → ∞,

and
max

n=1,...,N
∆(k)−1

E0
n(∆(k))

h
(k)
n

→ 0, k → ∞,

then there exists K1, K1 ≥ K0, such that, for k ≥ K1, the sequence
{φ(k)

n } is defined, i.e.,

h
(k)
n+1 ≤ Hmax

(
t(k)
n , φ(k)

n

)
, n = 0, 1, . . . , N∆(k) − 1,

and
E(∆(k)) = O

(
max

n=1,...,N
∆(k)

En(∆(k))
)

+ O
(

max
n=1,...,N

∆(k)−1

E0
n(∆(k))

h
(k)
n

)
, k → ∞.

In order to prove (i), let K2 be such that K2 ≥ K1 and

h∆(k) <
1
L
, k ≥ K2 (5.7)

and

e
L

1−h
(k)
∆

L
T

1 − h
(k)
∆ L

· max
n=1,...,N

∆(k)

En(∆(k))

+
e

L

1−h
(k)
∆

L
T

− 1
L

· max
n=1,...,N

∆(k)−1

E0
n(∆(k))

h
(k)
n

≤ δ. (5.8)
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Now, we fix an index k such that k ≥ K2 (it will be dropped in the notation).
We define, for n = 1, . . . , N∆,

En = max
i=1,...,n

Ei(∆),

E0
n = max

i=1,...,n

E0
i (∆)
hi

.

Moreover, if φn is defined, n = 0, . . . , N∆, we set

dn = d(φn, ytn),

d0
n = |φn(0) − ytn(0)|,

d
0
n = max

i=0,...,n
d0

i ,

noting that
dn = max

i=0,...,n
di.

For a given N ∈ {1, . . . , N∆ − 1}, we assume that the sequence {φn}N
n=0

is defined and satisfies

dN ≤ e
L

1−h∆L
(tN−1−t0)

1 − h∆L
· EN +

e
L

1−h∆L
(tN−1−t0) − 1
L

· E0
N−1, (5.9)

setting E0
N−1 = 0 for N = 1. To complete the induction, we prove that

φN+1 is defined and satisfies

dN+1 ≤ e
L

1−h∆L
(tN−t0)

1 − h∆L
· EN+1 +

e
L

1−h∆L
(tN−t0) − 1
L

· E0
N . (5.10)

Since (5.8) and (5.9) imply dN = d(φn, ytn) ≤ δ, we have

hN+1 ≤ h∆ < H ≤ Hmax(tN , φN ),

recalling Definition 5.4. Hence, φN+1 is defined. Moreover, we have

‖z̃(tn, φn, hn+1) − z̃(tN , ytN , hN+1)‖ ≤ LeN . (5.11)

Let n = 0, 1, . . . , N . By (5.11), we obtain

d0
n+1 = |φn+1(0) − ytn+1(0)|

≤
∣∣v(φn, z̃

∗(tn, φn, hn+1)
)
(hn+1)

− v
(
ytn , z̃

∗(tn, ytn , hn+1)
)
(hn+1)

∣∣
+

∣∣v(ytn , z̃
∗(tn, ytn , hn+1)

)
(hn+1)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1)

∣∣
≤ d0

n + hn+1Ldn + E0
n+1(∆).
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Moreover, for θ ≤ −hn+1, we have

|φn+1(θ) − ytn+1(θ)| =
∣∣v(φn, z̃

∗(tn, φn, hn)
)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤ |φn(hn+1 + θ) − ytn(hn+1 + θ)|
≤ dn

and, for θ ∈ [−hn+1, 0], again by (5.11), we have

|φn+1(θ) − ytn+1(θ)| =
∣∣v(φn, z̃

∗(tn, φn, hn+1)
)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤

∣∣v(φn, z̃
∗(tn, φn, hn+1)

)
(hn+1 + θ)

− v
(
ytn , z̃

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
+

∣∣v(ytn , z̃
∗(tn, ytn , hn+1)

)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤ d0

n + hn+1Ldn + En+1(∆).

Thus, we have

d0
n+1 ≤ d0

n + hn+1Ldn + E0
n+1(∆), n = 0, 1, . . . , N, (5.12)

and

dn+1 ≤ max
{
dn,d0

n + hn+1Ldn + En+1(∆)
}
, n = 0, 1, . . . , N. (5.13)

Now, for n = 0, 1, . . . , N , we have

d
0
n+1 ≤ d

0
n + hn+1Ldn + E0

n+1(∆) (5.14)

since d
0
n+1 = max

{
d0

n+1,d
0
n

}
and

d0
n+1 ≤ d

0
n + hn+1Ldn + E0

n+1(∆)

by (5.12). Moreover, for i = 0, 1, . . . , N , (5.13) yields

di+1 ≤ d0
i−k + hi+1−kLdi−k + Ei+1−k(∆)

for some k = 0, 1, 2, . . . . Hence,

di+1 ≤ 1
1 − h∆L

(
d

0
i + Ei+1

)
, i = 0, 1, . . . , N. (5.15)

By inserting (5.15) with i+ 1 = n in (5.14), we obtain

d
0
n+1 ≤

(
1 + hn+1

L

1 − h∆L

)
d

0
n

+ hn+1

(
L

1 − h∆M
En+1 + E0

n+1

)
, n = 0, 1, . . . , N. (5.16)
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The recursion (5.16) yields

d
0
N ≤

(
e

L
1−h∆L

(tN−t0) − 1
)
EN +

e
L

1−h∆L
(tN−t0) − 1

L
1−h∆L

· E0
N .

Thus, by (5.15) with i+ 1 = N + 1 we obtain (5.10).
Since φN is defined and (5.9) holds with N = 1, we obtain

E(∆) = dN∆
≤ e

L
1−h∆L

(T−hN∆
)

1 − h∆L
· EN∆

+
e

L
1−h∆L

(T−hN∆
) − 1

L
· E0

N∆−1,

and then (i) is proved.
Now, the theorem follows in a straightforward way from (i).

RFDEs with data set LC
For RFDEs (1.1) with data set LC, we introduce the concept of order of the
method.

Definition 5.5. Let q be a positive integer and let F be a family of in-
tegration problems (t0, φ, T ) such that y(t0, φ)|[t0,t0+T ] is piecewise smooth.
The method has order q on F if, for any integration problem (t0, φ, T ) ∈ F ,
there exist constants H > 0 and C > 0 such that

‖e(t, yt, h)‖ ≤ Chq

for any t ∈ [t0, t0 + T ) and h ∈ [0, Hmax(t, yt)) such that h ≤ T − t, the
interval (t, t+ h) does not contain breaking points of y(t0, φ) and h < H.

As for RFDEs with data set C, the order is linked to the global order by
the concept of stability.

Definition 5.6. Let F be a family of integration problems (t0, φ, T ). The
method is stable on F if, for any integration problem (t0, φ, T ), there exist
δ > 0, H > 0, L ≥ 0, M ≥ 0 and P ∈ [0, 1) such that

H ≤ Hmax(t, yt), t ∈ [t0, t0 + T ),

and

‖z̃(t, ϕ, h) − z̃(t, yt, h)‖ ≤ L · d(ϕ, yt) +M · d
(
ϕ′
−τ(t), y

′
t−τ(t)

)
+ P · d(ϕ′, y′t), h ∈ [0, H),

for any t ∈ [t0, t0+T ) and ϕ ∈ Y such that d(ϕ, yt) ≤ δ. Here, τ is a function
[t0, t0 + T ] → [0,+∞) for which there exist ξ0, ξ1, . . . , ξK−1, ξK such that

t0 = ξ0 < ξ1 < · · · < ξK−1 < ξK = t0 + T

and
t− τ(t) ≤ ξk, t ∈ [ξk, ξk+1] and k = 0, 1, . . . ,K − 1.
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Here is the convergence theorem for RFDEs with data set LC.

Theorem 5.2. (Convergence) Consider the numerical solution of inte-
gration problems given by the recursive process (5.2) and assume that the
numerical method is of type (5.3). Let F be a family of integration prob-
lems. If the method has order q and it is stable on F , then it has global
order q on F .

Proof. Consider the numerical solution of an integration problem (t0, φ, T )
belonging to the the family F . Let {∆(k)} be a sequence of meshes such
that h∆(k) → 0, k → ∞.

Let K0 be such that

h∆(k) ≤ H, k ≥ K0,

where H is given in Definition 5.6. Hence, for k ≥ K0, the local errors
in (5.6) are defined. As in the proof of Theorem 5.1, we now address the
errors.

(i) If

max
n=1,...,N

∆(k)

en(∆(k)) → 0, k → ∞,

then there exists K1, K1 ≥ K0, such that, for k ≥ K1, the sequence
{φ(k)

n } is defined and

E(∆(k)) = O
(

max
n=1,...,N

∆(k)

en(∆(k))
)
.

In order to prove (i), let K2 be such that K2 ≥ K1 and (5.7) hold, i.e.,

h∆(k) <
1
L
, k ≥ K2,

and let

e
L

1−h
(k)
∆

L
T

1 − h
(k)
∆ L

· max
n=1,...,N

∆(k)

En(∆(k)) ≤ δ. (5.17)

Now, we fix an index k such that k ≥ K2 (it will be dropped in the notation).
We define, for n = 1, . . . , N∆,

En = max
i=1,...,n

Ei(∆),

en = max
i=1,...,n

ei(∆).

Moreover, if φn is defined, n = 0, . . . , N∆, we set

dn = d(φn, ytn),
d′

n = d(φ′n, y
′
tn),
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noting that

dn = max
i=0,...,n

di and d′
n = max

i=0,...,n
d′

i.

We define the sets of indices

I0 = {0},
Ik =

{
n ∈ {0, . . . , N∆} | tn ∈ [ξk−1, ξk]

}
, k = 1, . . . ,K,

and set, for k = 0, . . . ,K,

d̂k = dmax Ik
, d̂′

k = d′
max Ik

and êk = emax Ik
.

For a given N ∈ {1, . . . , N∆ − 1}, we assume that the sequence {φn}N
n=0

is defined and satisfies

dN ≤ eLC1(tN−t0) − 1
LC1

· eN , (5.18)

where

C1 = 1 +
M + P

1 − P

(
1 +

MC0

1 − P

)
(5.19)

and

C0 =
k∑

i=1

(
M

1 − P

)k−i

. (5.20)

We complete the inductive proof by showing that φN+1 is defined and sat-
isfies

dN+1 ≤ eLC1(tN+1−t0) − 1
LC1

· eN+1. (5.21)

Since dN = d(φn, ytn) ≤ δ holds by (5.17) and (5.18), we obtain that
φN+1 is defined. Moreover, recalling Definition 5.6, we have

‖z̃(tn, φn, hn+1) − z̃(tN , ytN , hN+1)‖
≤ LdN +Md

(
(φ′n)−τ(tn), y

′
tn−τ(tn)

)
+ Pd′

n.
(5.22)

Let n = 0, 1, 2, . . . , N . We look for a bound for d′
n+1.

For θ ≤ −hn+1, we have

|φ′n+1(θ) − y′tn+1
(θ)| =

∣∣v′(φn, z̃
∗(tn, φn, hn+1)

)
(hn+1 + θ)

− v′
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
= |φ′n(hn+1 + θ) − y′tn(hn+1 + θ)|
≤ d′

n.
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For θ ∈ [−hn+1, 0], by (5.22), we have

|φ′n+1(θ) − y′tn+1
(θ)| =

∣∣v′(φn, z̃
∗(tn, φn, hn+1)

)
(hn+1 + θ)

− v′
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤

∣∣z̃∗(tn, φn, hn+1)(hn+1 + θ)

− z̃∗(tn, ytn , hn+1)(hn+1 + θ)
∣∣

≤
∣∣z̃∗(tn, φn, hn+1)(hn+1 + θ)

− z̃∗(tn, ytn , hn+1)(hn+1 + θ)
∣∣

+
∣∣z̃∗(tn, ytn , hn+1)(hn+1 + θ)

− z∗(tn, ytn , hn+1)(hn+1 + θ)
∣∣

≤ Ldn +Md
(
(φ′n)−τ(tn), (y

′
tn)−τ(tn)

)
+ Pd′

n + en+1(∆).

Now, if tn ∈ [ξk−1, ξk], k = 1, . . . ,K, then tn − τ(tn) ≤ ξk−1 and so

d
(
(φ′n)−τ(tn), y

′
tn−τ(tn)

)
≤ d(φ′m, y

′
tm) = d̂′

k,

where m is some index in the set Ik−1. Thus, if tn ∈ [ξk−1, ξk], we have

d′
n+1 ≤ max

{
d′

n, Ldn +M d̂′
k−1 + Pd′

n + en+1(∆)
}
.

As a consequence, we obtain

d′
n+1 ≤ Ldn +M d̂′

k−1 + Pd′
n + en+1

and then

d′
n+1 ≤ L

1 − P
dn +

M

1 − P
d̂′

k−1 +
1

1 − P
en+1. (5.23)

Inequality (5.23) yields

d̂′
k ≤ M

1 − P
d̂′

k−1 +
L

1 − P
d̂k +

1
1 − P

êk. (5.24)

and a recursive use of (5.24) gives

d̂′
k ≤ C0L

1 − P
d̂k +

C0

1 − P
êk,

where C0 is given by (5.20). Then, by (5.23),

d′
n+1 ≤ L

1 − P

(
1 +

MC0

1 − P

)
dn +

1
1 − P

(
1 +

MC0

1 − P

)
en+1. (5.25)
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Now, we look for a bound for dn+1. For θ ≤ −hn+1, we have

|φn+1(θ) − ytn+1(θ)| =
∣∣v(φn, z̃

∗(tn, φn, hn)
)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤ |φn(hn+1 + θ) − ytn(hn+1 + θ)|
≤ dn

and, for θ ∈ [−hn+1, 0], by (5.22), we have

|φn+1(θ) − ytn+1(θ)| =
∣∣v(φn, z̃

∗(tn, φn, hn+1)
)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤

∣∣v(φn, z̃
∗(tn, φn, hn+1)

)
(hn+1 + θ)

− v
(
ytn , z̃

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
+

∣∣v(ytn , z̃
∗(tn, ytn , hn+1)

)
(hn+1 + θ)

− v
(
ytn , z

∗(tn, ytn , hn+1)
)
(hn+1 + θ)

∣∣
≤ dn + hn+1Ldn

+ hn+1Md
(
(φ′n)−τ(tn), (y

′
tn)−τ(tn)

)
+ Pd′

n + En+1(∆).

Thus,

dn+1 ≤ (1 + hn+1L)dn + hn+1(M + P )d′
n + En+1(∆). (5.26)

By summarizing, we have proved the inequalities (5.25) and (5.26) for
n = 0, . . . , N . Hence, we obtain

dn+1 ≤ (1 + hn+1LC1)dn + hn+1C1en+1, n = 0, . . . , N, (5.27)

where C1 is given by (5.19). The recursion (5.27) yields (5.21). Moreover,
since φN is defined and (5.18) holds with N = 1, we obtain

E(∆) = dN∆
≤ eLC1T − 1

LC1
· eN∆

,

and then (i) and the theorem follow.

6. Functional continuous Runge–Kutta methods

The development of methods based on suitable modifications of RK methods
for the numerical integration of IPs for RFDEs began in the late 1960s/early
1970s, and was essentially due to the pioneering papers of Feldstein (1964),
Tavernini (1971) and Cryer and Tavernini (1972). In particular, Cryer and
Tavernini (1972) considered the following generalization of the Euler and
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Heun method, and proved that they are convergent of order one and two
respectively. Specifically, we have the following methods.

Euler method :

η(tn + θhn+1) = η(tn) + hn+1θF
(
tn, ηtn

)
, θ ∈ [0, 1];

Heun method :

η(tn + θhn+1) = η(tn) + hn+1

[(
θ − 1

2
θ2

)
F
(
tn, ηtn

)
+

1
2
θ2F

(
tn+1, Ytn+1

)]
,

for θ ∈ [0, 1],

where

Y
(
tn + θh

)
= η(tn) + hn+1θF

(
tn, η(tn)

)
, θ ∈ [0, 1],

Y (t) = η(t), t ∈ (−∞, tn].

Tavernini (1971) also proposed higher-order explicit methods obtained by
a predictor–corrector implementation of polynomial collocation. First, he
introduced a sequence {η(s)}s=2,3,...,s of implicit methods given by

η(s)(tn + θhn+1) = η(tn) + hn+1

s∑
i=1

b
(s)
i (θ)F

(
tn + c

(s)
i hn+1, η

(s)

tn+c
(s)
i hn+1

)
,

for θ ∈ [0, 1],

where, for i = 1, . . . , s, c(s)i ∈ [0, 1] are distinct points, and b
(s)
i (·) : [0, 1] →

R, i = 1, . . . , s, are polynomials of degree s defined by the collocation con-
ditions

(η(s))′
(
tn + c

(s)
i hn+1

)
= F

(
tn + c

(s)
i hn+1, η

(s)

tn+c
(s)
i hn+1

)
, i = 1, . . . , s.

In particular, he proposed the three equispaced nodes collocation methods,
given in Table 6.1.

Then Tavernini considered the explicit method given by the recurrence
relation

η(1)(tn + θhn+1) = η(tn) + hn+1θF
(
tn, ηtn

)
, θ ∈ [0, 1],

η(1)(t) = η(t), t ≤ tn,

η(s)(tn + θhn+1) = η(tn) + hn+1

s∑
i=1

b
(s)
i (θ)F

(
tn + c

(s)
i hn+1, η

(s−1)

tn+c
(s)
i hn+1

)
,

for θ ∈ [0, 1],
η(s)(t) = η(t), t ≤ tn,

for s = 2, . . . , s, and finally,

η(tn + θhn+1) = η(s)(tn + θhn+1), θ ∈ [0, 1].
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Table 6.1. Abscissae and continuous weights of the collocation methods
proposed by Tavernini (1971).

s c(s) b(s)

2 (0, 1) b(2)(θ) =
(
θ − 1

2θ
2, 1

2θ
2
)

3
(
0, 1

2 , 1
)

b(3)(θ) =
(
θ − 3

2θ
2 + 2

3θ
3, 2θ2 − 4

3θ
3, − θ2

2 + 2
3θ

3
)

4
(
0, 1

3 ,
2
3 , 1

)
b(4)(θ) =

(
θ − 11

4 θ
2 + 3θ3 − 9

8θ
4, 9

2θ
2 − 15

2 θ
3 + 27

8 θ
4,

− 9
4θ

2 + 6θ3 − 27
8 θ

4, 1
2θ

2 − 3
2θ

3 + 9
8θ

4
)

For s = 1 and s = 2 the previous Euler and Heun methods, respectively,
are obtained. In this way, explicit methods of arbitrary global order r for
functional equations were obtained at the cost of 1 + r(r−1)

2 evaluations of
the functional F . Indeed, Tavernini also found a particular explicit method
of global order 4 by using only 6 evaluations of F , instead of 7 as required by
the approach described above. Surprisingly, after Tavernini this approach
was not further investigated. Only recently, a general class of RK meth-
ods for RFDEs, including all implicit and explicit methods considered by
Tavernini as particular instances, was proposed and investigated by Maset,
Torelli and Vermiglio (2005). These methods, denoted by (A(θ), b(θ), c) and
called functional continuous Runge–Kutta methods (FCRK), are considered
in the following section.

6.1. The general form of FCRK methods

Definition 6.1. Let ν be a positive integer. A ν-stage functional con-
tinuous Runge–Kutta method is a triple (A(θ), b(θ), c), where A(θ) is an
R

ν×ν-valued polynomial function such that A(0) = 0, b(θ) is an R
ν-valued

polynomial function such that b(0) = 0, and c ∈ R
ν with 0 ≤ ci ≤ 1,

i = 1, . . . , ν.

The FCRK method (A(θ), b(θ), c) provides the approximation

Ṽ (σ, ϕ, h) = ṽh, (6.1)

where the function ṽ : (−∞, h] → R
d is given by

ṽ(θh) = ϕ(0) + h
ν∑

i=1

bi(θ)Ki, θ ∈ [0, 1],

ṽ(t) = ϕ(t), t ∈ (−∞, 0],



Retarded functional differential equations 35

the derivatives Ki ∈ R
d, i = 1, . . . , ν, are given by

Ki = F (σ + cih, Y
i
cih

)

and the stage functions Y i : (−∞, h] → R
d, i = 1, . . . , ν, are given by

Y i(θh) = ϕ(0) + h
ν∑

j=1

aij(θ)Kj , θ ∈ [0, 1],

Y i(t) = ϕ(t), t ∈ (−∞, 0].

Note that the conditions A(0) = 0 and b(0) = 0 guarantee the continuity of
the functions ṽ and Y i, i = 1, . . . , ν.

The FCRK method (A(θ), b(θ), c) will be denoted by the tableau

c A(θ)

b(θ)
.

In particular, the Euler and Heun methods are given by

0 0

θ
(6.2)

and
0 0 0
1 θ 0

θ − 1
2θ

2 1
2θ

2

, (6.3)

respectively.
Moreover, we partition the set I = {1, . . . , ν} of indices in the subsets

I+ =
{
ci > 0 | i = 1, . . . , ν

}
and

I0 =
{
ci = 0 | i = 1, . . . , ν

}
.

Note that, if i ∈ I0, then Ki = F (σ, ϕ).
To show that the FCRK method (A(θ), b(θ), c) provides an approximation

of the solution map in the form (5.3), we introduce the following.

• The prolongation linear operators

π : (Rd)ν → Ch = C([0, h],Rd), (6.4)

Πi : (Rd)ν → Ch, i ∈ I,

Π : (Rd)ν → (Ch)ν ,
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given by

(πU)(t) =
ν∑

i=1

b′i

(
t

h

)
Ui,

(ΠiU)(t) =
ν∑

j=1

a′ij

(
t

h

)
Uj ,

t ∈ [0, h] and U = (U1, . . . , Uν) ∈ (Rd)ν ,

where the derivatives b′i(θ) and a′ij(θ) of the polynomial functions bi(θ)
and aij(θ) appear, and

ΠU = (Π1U, . . . ,ΠνU), U ∈ (Rd)ν .

• The restriction linear operator

R : (Ch)ν → (Rd)ν

defined by

RZ =
(
Z1(c1h), . . . , Zν(cνh)

)
, Z ∈ (Ch)ν .

• The map
Q�

h(σ, ϕ) : (Ch)ν → (L�
h)ν

defined by

Q�
h(σ, ϕ)Z =

(
Q�

h(σ, ϕ)(Z1), . . . , Q�
h(σ, ϕ)(Zν)

)
, Z ∈ (Ch)ν ,

where L�
h is the space of the measurable and bounded functions [0, h] →

R
d and Q�

h(σ, ϕ) is given by (4.4).

Proposition 6.1. The FCRK method (A(θ), b(θ), c) yields an approxima-
tion of the type (5.3), where

z̃∗(σ, ϕ, h) = πK,

and K = (K1, . . . ,Kν) ∈ (Rd)ν is a fixed point of the map

RQ�
h(σ, ϕ)Π : (Rd)ν → (Rd)ν .

Proof. For the function ṽ in (6.1), we have

ṽ(t) = ϕ(0) + h
ν∑

i=1

bi

(
t

h

)
Ki

= ϕ(0) +
∫ t

0

ν∑
i=1

b′i

(
s

h

)
Ki ds

= v(ϕ, πK), t ∈ [0, h].
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Analogously, for the stage functions we obtain

Y i(t) = ϕ(0) +
∫ t

0

ν∑
j=1

a′ij

(
s

h

)
Kj ds

= v(ϕ,ΠiK)(t), t ∈ [0, h],

and then, for i = 1, . . . , ν,

Ki = F
(
σ + cih, v(ϕ,ΠiK)cih

)
= [Q�

h(σ, ϕ)(ΠiK)](cih)

= R
(
Q�

h(σ, ϕ)(Π1K), . . . , Q�
h(σ, ϕ)(ΠνK)

)
i

= [RQ�
h(σ, ϕ)Π](K)i.

An FCRK method (A(θ), b(θ), c) is called explicit if c1 = 0 and, for i =
2, . . . , ν, aij(θ) = 0 for j = i, . . . , ν. The method is called implicit if it is
not explicit.

If the method is explicit, the derivatives Ki, i = 1, . . . , ν, can be explicitly
obtained in a recursive way: we compute

K1 = F (σ, ϕ)

and then, successively for i = 2, . . . , ν,

Ki = F (σ + cih, Y
i
cih

),

where

Y i(θh) = ϕ(0) + h

i−1∑
j=1

aij(θ)Kj , θ ∈ [0, 1],

Y i(t) = ϕ(t), t ∈ (−∞, 0].

If the method is implicit, the derivative vector K = (K1, . . . ,Kν) is ob-
tained as a solution of the fixed point equation

K = [RQ�
h(σ, ϕ)Π](K)

on (Rd)ν .

6.2. Well-posedness of FCRK methods

In this section, we study fixed points of the map RQ�
h(σ, ϕ)Π. In order to

avoid unwieldy notation, we omit the ordered pair (σ, ϕ).
First of all, observe that we cannot hope to have a unique fixed point of

the map RQ�
hΠ, even for small h. In fact, consider the scalar IP for ODEs

y′(t) = λy(t)2, t ≥ 0,
y(0) = y0 ∈ R.
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The derivative K for the implicit Euler method is an approximation of y′(h)
and satisfies the equation

K = λ(y0 + hK)2.

Such an equation has the two solutions,

K+ =
2λy2

0

1 − 2hλy0 +
√

1 − 4hλy0
→ λy2

0, h→ 0,

and
K− =

2λy2
0

1 − 2hλy0 −
√

1 − 4hλy0
→ ∞, h→ 0.

The solution K+ is an approximation of y′(h), whereas K− is a spurious
solution which diverges as h→ 0.

In order to study the fixed points of the map RQ�
hΠ, we introduce the

following.

• A norm | · | on R
d.

• A norm on (Rd)ν ,
‖U‖∞ = max

i=1,...,ν
|Ui|, U ∈ (Rd)ν .

• A norm on the spaces L�
h and Ch ⊆ L�

h,

‖z‖ = sup
t∈[0,T ]

|z(t)|, z ∈ L�
h.

• For any ρ > 0, the closed ball in (Rd)ν ,

Bρ =
{
U ∈ (Rd)ν | ‖U‖∞ ≤ ρ

}
,

the closed ball in Ch,
Ch,ρ = {z ∈ Ch | ‖z‖ ≤ ρ},

and the Lipschitz constant,

k�h,ρ = sup
z1,z2∈Ch,ρ

z1 �=z2

‖Q�
h(z1) −Q�

h(z2)‖
‖z1 − z2‖

of the map Q�
h on Ch,ρ.

The next theorem concerns the fixed points of RQ�
hΠ (see Maset (2009)).

Theorem 6.1. (Well-posedness) If:

(A) There exist a function a : (0, h0] × [ρ0,+∞) → [0,+∞), where h0 > 0
and ρ0 > 0, and a constant b ∈ [0,+∞) such that:

(1) k�h,ρ ≤ a(h, ρ) + b, (h, ρ) ∈ (0, h0] × [ρ0,+∞),
(2) limh↓0 a(h, ρ) = 0, ρ ∈ [ρ0,+∞),
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(3) bΛ < 1, where

Λ = max
i∈I+

max
θ∈[0,ci]

ν∑
j=1

|a′ij(θ)|, (6.5)

then there exist ρ0 > 0 and h > 0 such that, for 0 < h < h, the map RQ�
hΠ

has a unique fixed point in Bρ0
, which is contained in the interior of Bρ0

.
Moreover, any other fixed point of RQ�

hΠ diverges as h → 0. Finally, for
any ρ ≥ ρ0, there exists ĥ = ĥ(ρ) > 0 such that

k�h,ΛρΛ < 1 (6.6)

for 0 < h < ĥ.

The hypothesis (A) in Theorem 6.1 holds for any (σ, ϕ) ∈ R × Y for
DDEs, SDDDEs, DIDEs, SDDIDEs, NDIDEs and NSDDIDEs, whenever
the equations satisfy the conditions stated in the existence theorems of
Section 4. For NDDEs, we have to require, in addition, that all the delays
τ∗j , j = 1, . . . , s∗, are non-vanishing. In all these cases, (1) holds with b = 0
and then (3) is satisfied with no restrictions on Λ.

For an NDDE with some strongly vanishing delay τ∗j , the hypothesis (A)
holds for any (σ, ϕ) ∈ R × Y under the restriction Λ ≤ 1. In fact, (1) holds
for some b ∈ [0, 1) and then (3) is fulfilled if Λ ≤ 1.

Henceforth, we assume that the hypothesis (A) of Theorem 6.1 is satis-
fied for any (σ, ϕ) ∈ R × Y . Under this assumption, the FCRK method
(A(θ), b(θ), c) provides the approximation

Ṽ (σ, ϕ, h) = v
(
ϕ, z̃∗(σ, ϕ, h)

)
, (σ, ϕ) ∈ R × Y and h ∈

[
0, Hmax(σ, ϕ)

)
,

where z̃∗(σ, ϕ, h) = pK, K = K(σ, ϕ, h) is the unique fixed point of the map
RQ�

h(σ, ϕ)Π on Bρ0
, and ρ0 = ρ0(σ, ϕ) and Hmax(σ, ϕ) = h = h(σ, ϕ) are

defined in Theorem 6.1.

7. Order conditions for FCRK methods

In this section, which is also based on the results by Maset, Torelli and
Vermiglio (2005), we give an expansion of the local error functions defined
in Section 5 in terms of the step-size h, and then we develop conditions for
obtaining a given uniform or discrete order for RFDEs with data set C and
a given order for RFDEs with data set LC.

7.1. Study of the local error functions

We analyse the local error functions e(σ, ϕ, h) and E(σ, ϕ, h) given by (5.4)
and (5.5). Here, we have (σ, ϕ) ∈ R × Y and

h ∈
[
0,min{Tmax(σ, ϕ), Hmax(σ, ϕ)}

)
,
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and so both the functions z∗(σ, ϕ, h) and z̃∗(σ, ϕ, h) = pK(σ, ϕ, h) are de-
fined. In this study, we assume that z∗(σ, ϕ, h) is at least continuous. In
order to avoid cumbersome notation, we omit the dependence on (σ, ϕ, h).

Let

Z∗ = (z∗, . . . , z∗) ∈ (Ch)ν .

It is clear that Z∗ is a fixed point of the map Q�
h.

The local error functions e and E can be written as

e = γ + π∆ (7.1)

and

E =
∫
γ +

∫
π∆, (7.2)

where

γ = πRZ∗ − z∗ ∈ Ch

and

∆ = K −RZ∗ ∈ (Rd)ν .

As for the error γ, we can give the following bound.

Proposition 7.1. If z∗ is of class Cm, where m is non-negative integer,
then

max
θ∈[0,1]

∣∣∣∣γ(θh) − m−1∑
k=0

γk(θ)
hk

k!
(z∗)(k)(0)

∣∣∣∣
≤ hm

m!
max
θ∈[0,1]

( ν∑
i=1

|b′i(θ)|cmi + θm

)
max
t∈[0,h]

|z(m)(t)|,

where, for k = 0, 1, . . . ,m− 1,

γk(θ) =
ν∑

i=1

b′i(θ)c
k
i − θk, θ ∈ [0, 1].

Proof. We have, for θ ∈ [0, 1],

γ(θh) =
ν∑

i=1

b′i(θ)z
∗(cih) − z∗(θh)

=
ν∑

i=1

b′i(θ)
(m−1∑

k=0

cki h
k

k!
(z∗)(k)(0)

+
1

(m− 1)!

∫ 1

0
(1 − s)m−1(z∗)(m)(scih)cmi h

m ds
)
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−
(m−1∑

k=0

θkhk

k!
(z∗)(k)(0)

+
1

(m− 1)!

∫ 1

0
(1 − s)m−1(z∗)(m)(sθh)θmhm ds

)
=

m−1∑
k=0

hk

k!

( ν∑
i=1

b′i(θ)c
k
i − θk

)
(z∗)(k)(0) +

hm

(m− 1)!

·
∫ 1

0
(1 − s)m−1

( ν∑
i=1

b′i(θ)c
m
i (z∗)(m)(scih) − θm(z∗)(m)(sθh)

)
ds,

whenever z∗ is of class Cm+1.

As for the other error ∆ in (7.1), we have

∆ = R
(
Q�

h(Z∗ + Π∆ + Γ) − Q�
h(z∗)

)
, (7.3)

where
Γ = ΠRZ∗ − Z∗ ∈ (Ch)ν .

Note that, for i ∈ I0, ∆i = 0.
In the next proposition, we establish that

‖∆‖∞ = O(‖Γ‖+
∞), ‖Γ‖+

∞ → 0, (7.4)

where
‖Γ‖+

∞ = max
i∈I+

‖Γi|[0,cih]‖.

Proposition 7.2. If h < ĥ(Λρ1), where ĥ(·) is defined in Theorem 6.1,
Λ is defined in (6.5), ρ1 = max{ρ0,

1
Λ‖z∗‖�} and ρ0 is defined in Theorem 6.1,

then

‖∆‖∞ ≤
k�h,Λρ1

1 − k�h,Λρ1
Λ

· ‖Γ‖+
∞. (7.5)

Proof. Since K ∈ Bρ0
and

ΠK = Z∗ + Π∆ + Γ,

we have
z∗ + Πi∆ + Γi = ΠiK ∈ Ch,Λρ0

, i ∈ I+.

Thus, we have
z∗ + Πi∆ + Γi ∈ Ch,Λρ1

, i ∈ I+,

and
z∗ ∈ Ch,Λρ1

.
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Let h < ĥ(Λρ1). For any i ∈ I+, we have

|∆i| =
∣∣Q�

h(z∗ + Πi∆ + Γi)(cih) −Q�
h(z∗)(cih)

∣∣
=

∣∣Q�
cih

(
(z∗ + Πi∆ + Γi)|[0,cih]

)
(cih) −Q�

cih
(z∗|[0,cih])(cih)

∣∣
≤

∥∥Q�
cih

(
(z∗ + Πi∆ + Γi)|[0,cih]

)
−Q�

cih
(z∗|[0,cih])

∥∥�
≤ kcih,Λρ1

‖(Πi∆ + Γi)|[0,cih]‖

≤ kcih,Λρ1

(
max

θ∈[0,ci]

ν∑
j=1

|a′ij(θ)|‖∆‖∞ + ‖Γi|[0,cih]‖
)

≤ kh,Λρ1
(Λ‖∆‖∞ + ‖Γ‖+

∞).

Thus, (7.5) follows since kh,Λρ1
Λ < 1 holds by (6.6).

As for the errors Γi ∈ Ch, i ∈ I+, the following proposition holds.

Proposition 7.3. If z∗ is of class Cm, where m is a non-negative integer,
then, for i ∈ I+,

max
θ∈[0,ci]

∣∣∣∣Γi(θh) −
m−1∑
k=0

Γik(θ)
hk

k!
(z∗)(k)(0)

∣∣∣∣
≤ hm

m!
max

θ∈[0,ci]

( ν∑
i=1

|a′ij(θ)|cmi + θm

)
max

t∈[0,cih]
|z(m)(t)|,

where, for k = 0, 1, . . . ,m− 1,

Γik(θ) =
ν∑

i=1

a′ij(θ)c
k
j − θk, θ ∈ [0, ci].

Proof. The proof is analogous to the proof of Proposition 7.1.

Now, we look for an expansion of the error ∆ in terms of Γ. For our
purposes, it is sufficient to consider the first-order expansion given in the
next proposition.

Proposition 7.4. Let us assume that the map Q�
h is of class C2. Then:

(i) the map Q�
h is of class C2;

and, under the hypothesis in Proposition 7.2,

(ii) the linear map
R(Q�

h)′(z∗)Π : (Rd)ν → (Rd)ν

has norm less than 1;
(iii)

∆ = LhΓ + R(∆,Γ), (7.6)
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where Lh is the linear operator (Ch)ν → (Rd)ν given by

LhZ =
(
I(Rd)ν −R(Q�

h)′(z∗)Π
)−1

R(Q�
h)′(Z∗)Z, Z ∈ (Ch)ν ,

and

R(∆,Γ) =
1
2
(
I(Rd)ν −R(Q�

h)′(z∗)Π
)−1

·R
∫ 1

0
(1 − s)(Q�

h)′′
(
Z∗ + s(Π∆ + Γ)

)
(Π∆ + Γ,Π∆ + Γ) ds.

Proof. Point (i) is obvious. Note that

(Q�
h)′(z)Y =

(
(Q�

h)′(Z1)Y1, . . . , (Q�
h)′(Zν)Yν

)
,

for Z, Y ∈ (Ch)ν ,

and

(Q�
h)′′(z)(Y,X) =

(
(Q�

h)′′(Z1)(Y1, X1), . . . , (Q�
h)′′(Zν)(Yν , Xν)

)
,

for Z, Y,X ∈ (Ch)ν .

Now, we prove (i) and (ii). Under the hypothesis of Proposition 7.2, i.e.,
h < ĥ(Λρ1), we have

‖z∗‖ < Λρ1

and
kh,Λρ1

Λ < 1.

The map Q�
h is differentiable at z∗. Note that

[(Q�
h)′(z∗)u](0) = 0, u ∈ Ch.

Moreover, for 0 < h1 ≤ h, the map Q�
h1

is differentiable at z∗|[0,h1] and

(Q�
h1

)′(z∗|[0,h1])u|[0,h1] =
(
(Q�

h1
)′(z∗)u

)
|[0,h1], u ∈ Ch,

and ∥∥(Q�
h1

)′
(
z∗|[0,h1]

)∥∥ ≤ k�h1,Λρ1
.

Hence, for U ∈ (Rd)ν , we have∣∣(R(Q�
h)′(Z∗)ΠU

)
i

∣∣ =
∣∣[(Q�

h)′(z∗)ΠiU
]
(cih)

∣∣
=

∣∣[(Q�
cih

)′(z∗|[0,cih])ΠiU |[0,cih]

]
(cih)

∣∣
≤

∥∥(Q�
cih

)′(z∗|[0,cih])ΠiU |[0,cih]

∥∥
≤ kcih,Λρ1

∥∥ΠU |[0,cih]

∥∥
≤ kcih,Λρ1

max
θ∈[0,ci]

ν∑
j=1

|aij(θ)|‖U‖∞

≤ kh,Λρ1
Λ‖U‖∞
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if i ∈ I+ and ∣∣(R(Q�
h)′(Z∗)ΠU

)
i

∣∣ =
∣∣[(Q�

h)′(z∗)ΠiU
]
(0)

∣∣ = 0

if i ∈ I0. Thus ∥∥R(Q�
h)′(Z∗)ΠU

∥∥ ≤ kh,Λρ1
Λ < 1.

Finally, we prove (iii). Since the map Q�
h is of class C2, we obtain

Q�
h(Z∗ + Π∆ + Γ) − Q�

h(z∗) = (Q�
h)′(z∗)(Π∆ + Γ)

+
∫ 1

0
(1 − s)(Q�

h)′′(Z∗ + sΠ∆ + Γ)(Π∆ + Γ,Π∆ + Γ) ds,

and so, by (7.3),(
I(Rd)ν −R(Q�

h)′(z∗)Π
)
∆ = R(Q�

h)′(z∗)Γ

+R

∫ 1

0
(1 − s)(Q�

h)′′(Z∗ + sΠ∆ + Γ)(Π∆ + Γ,Π∆ + Γ) ds.

Since ‖R(Q�
h)′(Z∗)Π‖ < 1, we obtain (7.6).

Under the assumption that the map (Q�
h)′′ is bounded in a neighbourhood

of z∗, we obtain

∆ = LhΓ + O
(
(‖Γ‖+

∞)2
)
, ‖Γ‖+

∞ → 0.

Moreover, we can write

LhΓ = R(Q�
h)′(Z∗)Γ +

∞∑
k=1

(
R(Q�

h)′(z∗)Π
)k
R(Q�

h)′(Z∗)Γ.

In general, the first term R(Q�
h)′(z∗)Γ on the right-hand side does not have

infinitesimal order, with respect to h, lower than the other terms. However,
there are important cases where this happens. This is the subject of the
next subsection, where we consider RFDEs (1.1) satisfying the following
Regularity Condition.

(RC) For any (σ, ϕ) ∈ R ×X, there exists a map Q�
h(σ, ϕ) : Ch → L�

h such
that

Q�
h(σ, ϕ)(z) = Q

�
h(σ, ϕ)

(∫
z

)
, z ∈ Ch.

Clearly, RFDEs with data set C satisfy the Regularity Condition. As for
RFDEs with data set LC, the Regularity Condition is satisfied for NDDEs
or NSDDIDEs whenever all the delays are non-vanishing.

On local error functions for equations satisfying the Regularity Condition
For equations fulfilling the Regularity Condition, we introduce the map

Q�
h : (Ch)ν → (Lh)ν
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defined by

Q�
hZ =

(
Q

�
h(Z1), . . . , Q

�
h(Zν)

)
, Z ∈ (Ch)ν .

Moreover, note that

(Q�
h)′(z)v = (Q�

h)′
(∫

z

)∫
v, z, v ∈ Ch,

(Q�
h)′′(z)v = (Q�

h)′′
(∫

z

)(∫
v,

∫
w

)
, z, v, w ∈ Ch.

When the Regularity Condition holds, Proposition 7.4 can be restated as
follows.

Proposition 7.5. Let us assume that the map Q�
h is of class C2 . Under

the hypothesis in Proposition 7.2, we have

∆ = LhΓ + R(∆,Γ),

where

LhΓ =
(
I −R(Q�

h)′
(∫

Z∗
)∫

Π
)−1

R(Q�
h)′

(∫
Z∗

)∫
Γ

and

R(∆,Γ) =
1
2

(
I −R(Q�

h)′
(∫

Z∗
)∫

Π
)−1

·R
∫ 1

0
(1 − s)(Q�

h)′′
(∫

Z∗ + s

∫
(Π∆ + Γ)

)(∫
(Π∆ + Γ),

∫
(Π∆ + Γ)

)
ds

with ∫
Z∗ =

(∫
z∗, . . . ,

∫
z∗

)
∈ (Ch)ν

and ∫
Π : (Rd)ν → (Ch)ν ,

(∫
Π
)
U =

(∫
Π1U1, . . . ,

∫
ΠνUν

)
.

As a consequence of the previous proposition, we obtain

∆ = LhΓ + h2 · O
(
(‖Γ‖+

∞)2
)
, ‖Γ‖+

∞ → 0, (7.7)

under the assumption that the map (Q�
h)′′ is bounded in a neighbourhood

of
∫
z∗.

Now, we refine equation (7.7) by giving an expansion of the components
∆i, where i ∈ I+, in terms of powers of h. To this end, we let c∗1, . . . , c∗ν∗
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denote the distinct positive abscissae. Moreover, we introduce:

• the continuous functions gk : [0, h] → R, k = 0, 1, 2, . . . , given by

gk(θh) =
∫ θ

0
γk(β) dβ =

ν∑
i=1

bi(θ)cki − θk+1

k + 1
, θ ∈ [0, 1]; (7.8)

• for any i ∈ I+, the continuous functions Gik : [0, h] → R, k = 0, 1, 2, . . . ,
given by

Gik(θh) =
∫ θ

0
Γik(β) dβ =

ν∑
i=1

aij(θ)ckj − θk+1

k + 1
, θ ∈ [0, 1]. (7.9)

Finally, we write (Q�
h)′ and (Q�

h)′ instead of (Q�
h)′

(∫
z∗

)
and (Q�

h)′
(∫
Z∗),

respectively.

Proposition 7.6. Let us assume that:

• the map Q
�
h is of class C2 and (Q�

h)′′ is bounded in a neighbourhood
of

∫
z∗;

• the fixed point z∗ of the map Qh is of class C3;

•
ν∑

j=1

aij(θ) = θ, θ ∈ [0, ci] and i ∈ I+. (7.10)

Then, for any i ∈ I+, we have

∆i = h2
[
(Q�

h)′ Gi1 · (z∗)′(0)
]
(cih)

+
h3

2
[
(Q�

h)′ Gi2 · (z∗)′′(0)
]
(cih) + h3[(Q�

h)′ui](cih)

+ O(h4), (7.11)

where

ui(t) =
ν∗∑

k=1

[
(Q�

h)′
ν∑

j=1
cj=c∗k

aij

(
t

h

)
Gj1 · (z∗)′(0)

]
(c∗kh), t ∈ [0, h].

Proof. Since (7.10) holds, we have, for any i ∈ I+,

Γi0(θ) = 0, θ ∈ [0, ci],

in Proposition 7.3. Hence ‖Γ‖+∞ = O(h) and so

∆ = LhΓ + O(h4).
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Now, we write

LhΓ =
(
I −R(Q�

h)′
∫

Π
)−1

R(Q�
h)′

∫
Γ

= R(Q�
h)′

∫
Γ +

[
R(Q�

h)′
∫

Π
]
R(Q�

h)′
∫

Γ

+
∞∑

k=2

[
R(Q�

h)′
∫

Π
]k

R(Q�
h)′

∫
Γ.

Since ‖
∫

Γ‖+∞ = O(h2) and ‖
∫

Π‖ = O(h), we obtain
∞∑

k=2

[
R(Q�

h)′
∫

Π
]k

R(Q�
h)′

∫
Γ = O(h4).

Moreover, for any i ∈ I+, we have(
R(Q�

h)′
∫

Γ
)

i

=
[
(Q�

h)′
∫

Γi

]
(cih),

where, by Proposition 7.3,

(Q�
h)′

∫
Γi = (Q�

h)′
∫ (

Γi1

(
·
h

)
h(z∗)′(0) + Γi2

(
·
h

)
h2

2
(z∗)′′(0) + O(h3)

)
= (Q�

h)′
∫ ·

h

0

(
Γi1(θ)h2(z∗)′(0) + Γi2(θ)

h3

2
(z∗)′′(0) + O(h4)

)
dθ

= h2(Q�
h)′Gi1 · (z∗)′(0)

+
h3

2
(Q�

h)′Gi2 · (z∗)′′(0)

+ O(h4).

Finally, for any i ∈ I+,([
R(Q�

h)′
∫

Π
]
R(Q�

h)′
∫

Γ
)

i

=
[
(Q�

h)′
∫

Πi R(Q�
h)′

(∫
Z∗

)∫
Γ
]
(cih),

where

(Q�
h)′

∫
Πi R(Q�

h)′
∫

Γ

= (Q�
h)′

∫ ( ν∑
j=1

a′ij

(
·
h

)[
(Q�

h)′
∫

Γj

]
(cjh)

)

= h(Q�
h)′

∫ ·
h

0

ν∑
j=1

a′ij(θ)
[
(Q�

h)′
∫

Γj

]
(cjh) dθ.
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Since

(Q�
h)′

∫
Γj = h2(Q�

h)′
∫ ·

h

0
Γj1(β) dβ(z∗)′(0) + O(h3)

= h2(Q�
h)′Gj1 · (z∗)′(0) + O(h3),

we conclude that∫ ·
h

0

ν∑
j=1

a′ij(θ)
[
(Q�

h)′
∫

Γj

]
(cjh) dθ

= h2

∫ ·
h

0

ν∑
j=1

a′ij(θ)
[
(Q�

h)′Gj1 · (z∗)′(0)
]
(cjh) dθ + O(h3)

= h2

∫ ·
h

0

ν∗∑
k=1

ν∑
j=1

cj=c∗k

a′ij(θ)
[
(Q�

h)′Gj1 · (z∗)′(0)
]
(c∗kh) dθ + O(h3)

= h2

∫ ·
h

0

ν∗∑
k=1

[
(Q�

h)′
ν∑

j=1
cj=c∗k

a′ij(θ)Gj1 · (z∗)′(0)

]
(c∗kh) dθ + O(h3),

and then

(Q�
h)′

∫
Πi R(Q�

h)′
∫

Γ

= h3(Q�
h)′

∫ ·
h

0

ν∗∑
k=1

[
(Q�

h)′
ν∑

j=1
cj=c∗k

a′ij(θ)Gj1 · (z∗)′(0)

]
(c∗kh) dθ

+ O(h4)

= h3(Q�
h)′

ν∗∑
k=1

[
(Q�

h)′
ν∑

j=1
cj=c∗k

∫ ·
h

0
a′ij(θ) dθ Gj1 · (z∗)′(0)

]
(c∗kh)

+ O(h4).

Thus, the expansion (7.11) follows.

Now, we are able to give the following expansions for the local error
functions e and E in terms of powers of h.

Theorem 7.1. Let us assume that:

• the map Q�
h is of class C2 and (Q�

h)′′ is bounded in a neighbourhood of z∗;

• the fixed point z∗ of the map Qh is of class C4;
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•
ν∑

j=1

aij(θ) = θ, θ ∈ [0, ci] and i ∈ I+. (7.12)

Then, for θ ∈ [0, 1],

e(θh) = γ0(θ) · z(0)

+ hγ1(θ) · (z∗)′(0)

+
h2

2
γ2(θ) · (z∗)′′(0)

+ h2
ν∗∑
l=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

b′i(θ)Gi1 · (z∗)′(0)

]
(c∗l h)

+
h3

6
γ3(θ) · (z∗)′′′(0)

+
h3

2

ν∗∑
l=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

b′i(θ)Gi2 · (z∗)′′(0)

]
(c∗l h)

+ h3
ν∗∑
l=1

[
(Q�

h)′wl(θ)
]
(c∗l h)

+ O(h4), (7.13)

where

wl(θ)(t) =
ν∗∑

k=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

ν∑
j=1

cj=c∗k

b′i(θ)aij

(
t

h

)
Gj1 · (z∗)′(0)

]
(c∗kh),

for t ∈ [0, h],

and

E(θh) = hg0(θh) · z∗(0)

+ h2g1(θh) · (z∗)′(0)

+
h3

2
g2(θh) · (z∗)′′(0)

+ h3
ν∗∑
l=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

bi(θ)Gi1 · (z∗)′(0)

]
(c∗l h)

+
h4

6
g3(θh) · (z∗)′′′(0)
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+
h4

2

ν∗∑
l=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

bi(θ)Gi2 · (z∗)′′(0)

]
(c∗l h)

+ h4
ν∗∑
l=1

[
(Q�

h)′ Wl(θ)
]
(c∗l h)

+ O(h5), (7.14)

where

Wl(θ)(t) =
ν∗∑

k=1

[
(Q�

h)′
ν∑

i=1
ci=c∗l

ν∑
j=1

cj=c∗k

bi(θ)aij

(
t

h

)
Gj1 · (z∗)′(0)

]
(c∗kh),

for t ∈ [0, h].

Proof. The expansion (7.13) follows by (7.1) and Propositions 7.1 and 7.6.
The expansion (7.14) follows by integrating (7.13).

7.2. Order conditions

In this section, we establish conditions on FCRK methods to obtain, for
RFDEs with data set C, a prescribed uniform or discrete order and, for
RFDEs with data set LC, a prescribed order. Moreover, by using such order
conditions, we construct explicit methods attaining a given global order.

RFDEs with data set C
Since RFDEs with data set C satisfy the Regularity Assumption, we can
use the expansion (7.14) in Theorem 7.1 for the local error E(σ, ϕ, h).

We consider an FCRK method satisfying the condition (7.12) and a family
F of integration problems (t0, φ, T ) such that:

(i) for all t ∈ [t0, t0 + T ), the map Q�
h(t, yt) is of class C2;

(ii) there exists ε > 0, H > 0 and M ≥ 0 such that, for all t ∈ [t0, t0 + T )
and h ∈ (0, T − t], ∥∥(Q�

h(t, yt)
)′′(z)∥∥ ≤M

whenever z ∈ Ch is such that ‖z − z∗(t, yt, h)‖ ≤ ε;

(iii) y|[t0,t0+T ] is piecewise C5.

Note that conditions (i), (ii) and (iii) permit us to use expansion (7.14)
and to assume that the term O(h5) is uniformly bounded with respect to
t ∈ [t0, t0 + T ). Moreover, we remark that a family of integration problems
of DDEs, DIDEs, SDDDEs or SDDIDEs fulfils conditions (i), (ii) and (iii)
if the function f , the delays and the kernel are sufficiently smooth (with
respect to the variable t only piecewise smoothness is required).
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Table 7.1. Uniform order conditions.

Order Conditions

1
ν∑

i=1

bi(θ) = θ, θ ∈ [0, 1]

2
ν∑

i=1

bi(θ)ci = θ2

2 , θ ∈ [0, 1]

3

ν∑
i=1

bi(θ)c2i = θ3

3 , θ ∈ [0, 1]

For any k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗k

bi(θ)
(

ν∑
j=1

aij(β)cj − β2

2

)
= 0, θ ∈ [0, 1] and β ∈ [0, c∗k]

4

ν∑
i=1

bi(θ)c3i = θ4

4 , θ ∈ [0, 1]

For any k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗k

bi(θ)
(

ν∑
j=1

aij(β)c2j − β3

3

)
= 0, θ ∈ [0, 1] and β ∈ [0, c∗k]

For any l, k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗l

ν∑
j=1

cj=c∗k

bi(θ)aij(β)
(

ν∑
k=1

ajk(γ)ck − γ2

2

)
= 0,

for θ ∈ [0, 1], β ∈ [0, c∗l ] and γ ∈ [0, c∗k]

In Table 7.1, we give the conditions for getting uniform order two, three
and four on the family F .

The order conditions are obtained by expansion (7.14) by recalling (7.8)
and (7.9). Such conditions are not only sufficient for getting the prescribed
order, but they are also necessary.

As for the discrete order, the conditions for getting discrete order two,
three and four are obtained by replacing bi(θ) with bi = bi(1) in Table 6.1.

The convergence Theorem 5.1 guarantees that a global order r on the
family F is attained if the method has uniform order r − 1, has discrete
order r and is stable on F . We remark that, exactly as in the case of
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the above conditions (i), (ii) and (iii), the method is stable on a family of
integration problems of DDEs, DIDEs, SDDEs and SDDIDEs if the function
f , the delays and the kernel are sufficiently smooth.

It is clear that, for any r ∈ {1, 2, 3, 4}, by taking

aij(θ) = bj(θ), θ ∈ [0, 1], i, j = 1, . . . , ν, (7.15)

we obtain global order r if
ν∑

i=1

bi(θ)ck−1
i =

θk−1

k
, θ ∈ [0, 1] and k = 1, . . . , r − 1, (7.16)

and ν∑
i=1

bic
r−1
i =

1
r
. (7.17)

Indeed, for methods of type (7.15), these conditions guarantee global order
r even if r > 4.

As an example, the conditions for r = 2 show that global order two is
attained by the one-stage method

1
2 θ

θ
,

which can be called the functional midpoint method. We also note that a
one-stage method,

c1 θ

θ
, (7.18)

has uniform order one and global order one. The global order two is attained
only if c1 = 1

2 .
By using conditions (7.15) and (7.16), only implicit methods can be con-

structed. On the other hand, by considering methods not satisfying (7.15),
we can obtain explicit methods or semi-implicit methods (i.e., methods such
that aij(θ) = 0 for j > i). Here, we will consider only the case of explicit
methods.

Now, for each r ∈ {1, 2, 3, 4}, we construct explicit methods (satisfying
the condition (7.12) and attaining global order r.

r = 1
Global order one is obtained by one-stage explicit methods,

0 0

b1(θ)
,

with discrete order one. The condition for the discrete order one is b1 = 1.
Hence, the functional explicit Euler method has global order one.
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r = 2
Global order two is obtained by two-stage explicit methods,

0 0 0
c2 θ 0

b1(θ) b2(θ)

,

with discrete order two and uniform order one. The conditions for discrete
order two and uniform order one are

b1(θ) + b2(θ) = θ, θ ∈ [0, 1],

b2 =
1

2c2
.

In particular, the family of FCRK methods

0 0 0
c2 θ 0

θ − θ2

2c2
θ2

2c2

, (7.19)

with uniform order two, which satisfies

b1(θ)c1 + b2(θ)c2 =
θ2

2
, θ ∈ [0, 1],

has global order two. Particular elements of this family are the functional
Heun method (6.3) (obtained for c = 1) and the method

0 0 0
1
2 θ 0

θ − θ2 θ2

(obtained for c = 1
2), which reduces to the Runge method for an ODE.

r = 3
Global order three is obtained by three-stage explicit methods,

0 0 0 0
c2 θ 0 0
c3 θ − a32(θ) a32(θ) 0

b1(θ) b2(θ) b3(θ)

,
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with discrete order three and uniform order two. The conditions for obtain-
ing such orders are

b1(θ) = θ − b2(θ) − b3(θ), θ ∈ [0, 1],

b2(θ)c2 + b3(θ)c3 =
θ2

2
, θ ∈ [0, 1],

b2c
2
2 + b3c

2
3 =

1
3
,

and

b2 = 0,

b3

(
a32(β)c2 −

β2

2

)
= 0, β ∈ [0, c3],

if c2 �= c3 and

b2

(
β − β2

2

)
+ b3

(
a32(β)c2 −

β2

2

)
= 0, β ∈ [0, c3],

if c2 = c3.
By choosing b2(θ)=0, the previous conditions select the family of methods

0 0 0 0
c2 θ 0 0
2
3 θ − θ2

2c2
θ2

2c2
0

θ − 3
4θ

2 0 3
4θ

2

.

On the other hand, by taking c2 = c3, the previous conditions reduce to

b1(θ) = θ − b2(θ) − b3(θ), θ ∈ [0, 1],

b2(θ) + b3(θ) =
θ2

2c2
, θ ∈ [0, 1],

b2 + b3 =
1

3c22
,

b3 �= 0,

a32(β) =
β2

2c2

(
1 +

b2
b3

)
− b2
c2b3

, β ∈ [0, 1],

which are equivalent to

c2 =
2
3
,

b1(θ) = θ − b2(θ) − b3(θ), θ ∈ [0, 1],
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b2(θ) =
3θ2

4
− b3(θ), θ ∈ [0, 1],

a32(β) =
9β2

16b3
, β ∈ [0, c3].

r = 4
Global order four is obtained by explicit methods of discrete order four and
uniform order three.

It is known that explicit continuous RK methods attain uniform order
three if they have at least four stages (see Table 8.3 in Section 8). Hence,
at least four stages have to be used for an FCRK method of uniform order
three. One can prove that there do not exist explicit five-stage FCRK meth-
ods of discrete order four. Hence, we consider six-stage explicit methods:

0 0 0 0 0 0 0
c2 θ 0 0 0 0 0
c3 θ − a32(θ) a32(θ) 0 0 0 0

c4 θ −
3∑

j=2
a4j(θ) a42(θ) a43(θ) 0 0 0

c5 θ −
4∑

j=2
a5j(θ) a52(θ) a53(θ) a54(θ) 0 0

c6 θ −
5∑

j=2
a6j(θ) a62(θ) a63(θ) a64(θ) a65(θ) 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

. (7.20)

Proposition 7.7. An explicit six-stage RK method (7.20) is of uniform
order three and discrete order four if (and only if for distinct abscissae)

c5 + c6
3

− c5c6
2

=
1
4
,

b1(θ) = θ − b3(θ) − b4(θ) − b5(θ) − b6(θ), θ ∈ [0, 1],

b2(θ) = 0, θ ∈ [0, 1],

b3 = b4 = 0,

b3(θ)c3 + b4(θ)c4 + b5(θ)c5 + b6(θ)c6 =
θ2

2
, θ ∈ [0, 1],

b3(θ)c23 + b4(θ)c24 + b5(θ)c25 + b6(θ)c26 =
θ3

3
, θ ∈ [0, 1],

a32(β) =
β2

2c2
, β ∈ [0, c2],
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a42(β)c2 + a43(β)c3 =
β2

2
, β ∈ [0, c4],

a52(β) = 0, β ∈ [0, c5],

a53(β) =
β2c4

2c3(c4 − c3)
− β3

3c3(c4 − c3)
, β ∈ [0, c5],

a54(β) = − β2c3
2c4(c4 − c3)

+
β3

3c4(c4 − c3)
, β ∈ [0, c5],

a62(β) = 0, β ∈ [0, c6],

a63(β)c3 + a64(β)c4 + a65(β)c5 =
β2

2
, β ∈ [0, c6],

a63(β)c23 + a64(β)c24 + a65(β)c24 =
β3

3
, β ∈ [0, c6]. (7.21)

Proof. Sufficient conditions (and also necessary in the case of distinct ab-
scissae) for uniform order three and discrete order four are as follows, divided
into three blocks (see Table 7.1).

(1) b1(θ) + b2(θ) + b3(θ) + b4(θ) + b5(θ) + b6(θ) = θ, θ ∈ [0, 1],

b2(θ)c2 + b3(θ)c3 + b4(θ)c4 + b5(θ)c5 + b6(θ)c6 =
θ2

2
, θ ∈ [0, 1],

b2(θ)c22 + b3(θ)c23 + b4(θ)c24 + b5(θ)c25 + b6(θ)c26 =
θ3

3
, θ ∈ [0, 1],

b2c
3
2 + b3c

3
3 + b4c

3
4 + b5c

3
5 + b6c

3
6 =

1
4
.

(2) b2(θ)
(
−β

2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c2],

b2 ·
(
−β

3

3

)
= 0, β ∈ [0, c2],

b3(θ)
(
a32(β)c2 −

β2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c3],

b3 ·
(
a32(β)c22 −

β3

3

)
= 0, β ∈ [0, c3],

b4(θ)
(
a42(β)c2 + a43(β)c3 −

β2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c4],

b4 ·
(
a42(β)c22 + a43(β)c23 −

β3

3

)
= 0, β ∈ [0, c4],
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b5(θ)
(
a52(β)c2 + a53(β)c3 + a54(β)c4 −

β2

2

)
= 0,

for θ ∈ [0, 1], β ∈ [0, c5],

b5 ·
(
a52(β)c22 + a53(β)c23 + a54(β)c24 −

β3

3

)
= 0, β ∈ [0, c5],

b6(θ)
(
a62(β)c2 + a63(β)c3 + a64(β)c4 + a65(β)c5 −

β2

2

)
= 0,

for θ ∈ [0, 1], β ∈ [0, c6],

b6 ·
(
a62(β)c22 + a63(β)c23 + a64(β)c24 + a65(β)c24 −

β3

3

)
= 0,

for β ∈ [0, c6].

(3) b3a32(β)
(
−γ

2

2

)
= 0, β ∈ [0, c3], γ ∈ [0, c2],

b4a42(β)
(
−γ

2

2

)
= 0, β ∈ [0, c4], γ ∈ [0, c2],

b4a43(β)
(
a32(γ)c2 −

γ2

2

)
= 0, β ∈ [0, c4], γ ∈ [0, c3],

b5a52(β)
(
−γ

2

2

)
= 0, β ∈ [0, c5], γ ∈ [0, c2],

b5a53(β)
(
a32(γ)c2 −

γ2

2

)
= 0, β ∈ [0, c5], γ ∈ [0, c3],

b5a54(β)
(
a42(γ)c2 + a43(γ)c3 −

γ2

2

)
= 0, β ∈ [0, c5], γ ∈ [0, c4],

b6a62(β)
(
−γ

2

2

)
= 0, β ∈ [0, c6], γ ∈ [0, c2],

b6a63(β)
(
a32(γ)c2 −

γ2

2

)
= 0, β ∈ [0, c6], γ ∈ [0, c3],

b6a64(β)
(
a42(γ)c2 + a43(γ)c3 −

γ2

2

)
= 0, β ∈ [0, c6], γ ∈ [0, c4],

b6a65(β)
(
a52(γ)c2 + a53(γ)c3 + a54(γ)c4 −

γ2

2

)
= 0,

for β ∈ [0, c6], γ ∈ [0, c5].

The first condition in block (2) implies b2(θ) = 0, the third and fourth
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conditions in (2) imply b3 = 0, and the fifth and sixth conditions, together
with the second condition in block (3), imply b4 = 0.

For a method with b2(θ) = 0 and b3 = b4 = 0, the conditions in block (1)
are satisfied only if b5, b6 �= 0 and are equivalent to

b1(θ) = θ − b3(θ) − b4(θ) − b5(θ) − b6(θ), θ ∈ [0, 1],

b3(θ)c3 + b4(θ)c4 + b5(θ)c5 + b6(θ)c6 =
1
2
, θ ∈ [0, 1],

b3(θ)c23 + b4(θ)c24 + b5(θ)c25 + b6(θ)c26 =
1
3
, θ ∈ [0, 1],

c5 + c6
3

− c5c6
2

=
1
4
.

For a method with b2(θ) = 0, b3 = b4 = 0 and b5, b6 �= 0, the conditions
in block (2) are equivalent to

b3(θ)
(
a32(β)c2 −

β2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c3],

b4(θ)
(
a42(β)c2 + a43(β)c3 −

β2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c4],

a52(β)c2 + a53(β)c3 + a54(β)c4 =
β2

2
, β ∈ [0, c5],

a52(β)c22 + a53(β)c23 + a54(β)c24 =
β3

3
, β ∈ [0, c5],

a62(β)c2 + a63(β)c3 + a64(β)c4 + a65(β)c5 =
β2

2
, β ∈ [0, c6],

a62(β)c22 + a63(β)c23 + a64(β)c24 + a65(β)c24 =
β3

3
, β ∈ [0, c6],

and the conditions in block (3) are equivalent to

a52(β) = 0, β ∈ [0, c5],

a53(β)
(
a32(γ)c2 −

γ2

2

)
= 0, β ∈ [0, c5], γ ∈ [0, c3],

a54(β)
(
a42(γ)c2 + a43(γ)c3 −

γ2

2

)
= 0, β ∈ [0, c5], γ ∈ [0, c4],

a62(β) = 0, β ∈ [0, c6],

a63(β)
(
a32(γ)c2 −

γ2

2

)
= 0, β ∈ [0, c6], γ ∈ [0, c3],

a64(β)
(
a42(γ)c2 + a43(γ)c3 −

γ2

2

)
= 0, β ∈ [0, c6], γ ∈ [0, c4],
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a65(β)
(
a52(γ)c2 + a53(γ)c3 + a54(γ)c4 −

γ2

2

)
= 0,

for β ∈ [0, c6], γ ∈ [0, c5].

So, the conditions in blocks (2) and (3) are equivalent to

a32(β)c2 =
β2

2
, β ∈ [0, c3],

a42(β)c2 + a43(β)c3 =
β2

2
, β ∈ [0, c4],

a52(β) = 0, β ∈ [0, c5],

a53(β)c3 + a54(β)c4 =
β2

2
, β ∈ [0, c5],

a53(β)c23 + a54(β)c24 =
β3

3
, β ∈ [0, c5],

a62(β) = 0, β ∈ [0, c6],

a63(β)c3 + a64(β)c4 + a65(β)c5 =
β2

2
, β ∈ [0, c6],

a63(β)c23 + a64(β)c24 + a65(β)c24 =
β3

3
, β ∈ [0, c6].

Now, conditions (7.21) follow.

The set (c5, c6) ∈ [0, 1]2 satisfying the first of conditions (7.21) is shown
in Figure 7.1. For example, by taking

c2 = 1, c3 =
1
2
, c4 = 1, c5 =

1
2
, c6 = 1,

b2(θ) = 0, b3(θ) = 0, b4(θ) = 0,
a43(β) = 0, a65(β) = 0,

we obtain the particular method of global order four which was proposed in
Tavernini (1971).

We remark that there does not exist an explicit six-stage RK method
(7.20) with distinct abscissae of uniform order four.

RFDEs with data set LC
First, we consider equations satisfying the Regularity Assumption. For such
equations, we can use expansion (7.13) in Theorem 7.1 for the local error
function e(σ, ϕ, h).

We consider an FCRK method satisfying condition (7.12) and a family
F of integration problems (t0, φ, T ) such that conditions (i), (ii) and (iii) of
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Figure 7.1. The curves are the set of couples (c5, c6) ∈ [0, 1]2

satisfying the first of conditions (7.21).

the previous subsection hold. A family of integration problems of NDDEs,
NDIDEs and NSDDDEs with non-vanishing delays fulfils conditions (i), (ii)
and (iii) if the function f , the delays and the kernel are sufficiently smooth.

In Table 7.2, we give the conditions for getting order one, two, three and
four on the family F .

It is clear that Table 7.2 reduces to Table 7.1 in the case of RFDEs with
data set C. Hence, the functional explicit Euler method has order one and
the two-stage methods in the family (7.19) have order two.

Now, we consider equations not satisfying the Regularity Assumption
and a family F of integration problems such that only condition (iii) of the
previous subsection holds. By (7.1), (7.4) and Propositions 7.1 and 7.3,
methods of type (7.15) attain order q if

ν∑
i=1

b′i(θ)c
k−1
i = θk−1, θ ∈ [0, 1] and k = 1, . . . , q,

or, equivalently,

ν∑
i=1

bi(θ)ck−1
i =

θk

k
, θ ∈ [0, 1] and k = 1, . . . , q.
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Table 7.2. Order conditions.

Order Conditions

1
ν∑

i=1

b′i(θ) = 1, θ ∈ [0, 1]

2
ν∑

i=1

b′i(θ)ci = θ, θ ∈ [0, 1]

3

ν∑
i=1

b′i(θ)c
2
i = θ2, θ ∈ [0, 1]

For any k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗k

b′i(θ)
(

ν∑
j=1

aij(β)cj − β2

2

)
= 0, θ ∈ [0, 1], β ∈ [0, c∗k]

4

ν∑
i=1

b′i(θ)c
3
i = θ3, θ ∈ [0, 1]

For any k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗k

b′i(θ)
(

ν∑
j=1

aij(β)c2j − β3

3

)
= 0, θ ∈ [0, 1], β ∈ [0, c∗k]

For any l, k = 1, . . . , ν∗,
ν∑

i=1
ci=c∗l

ν∑
j=1

cj=c∗k

b′i(θ)aij(β)
(

ν∑
k=1

ajk(γ)ck − γ2

2

)
= 0,

for θ ∈ [0, 1], β ∈ [0, c∗l ], γ ∈ [0, c∗k]

Hence, the one stage methods (7.18) (including the functional explicit Euler
method) have order one and the two-stage semi-implicit methods

0 0 0

c2 θ − θ2

2c2
θ2

2c2

θ − θ2

2c2
θ2

2c2

have order two.
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We conclude by remarking that, in both cases of equations satisfying and
not satisfying the Regularity Assumption, the convergence Theorem 5.2
guarantees that a global order r on the family F is attained if the method
has order r and is stable on F . The method turns out to be stable on a
family of integration problems of NDDEs, NDIDEs and NSDDIDEs if the
function f , the delays and the kernel are sufficiently smooth.

8. The standard approach

In this section we outline the standard approach based on continuous RK
methods, as described in the Introduction, applied to the specific classes of
DDEs,

y′(t) = f
(
t, y(t), y

(
t− τ(t, y(t))

))
, t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0,
(8.1)

and NDDEs

y′(t) = f
(
t, y(t), y

(
t− τ(t, y(t))

)
, y′

(
t− τ(t, y(t))

))
, t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0.
(8.2)

In order to simplify the notation, we consider one single delay. Moreover,
from now on, the end of the integration interval will be denoted by tf instead
of t0 + T , which was used in the previous sections.

Given a mesh ∆ = {t0, t1, . . . , tn, . . . , tN = tf}, the standard approach
for (8.1) consists in solving step by step, by means of the chosen continuous
RK method, the local problems

w′
n+1(t) = f

(
t, wn+1(t), x

(
t− τ(t, wn+1(t))

))
, tn ≤ t ≤ tn+1,

wn+1(tn) = yn,
(8.3)

where

x(s) =


φ(s) for s ≤ t0,

η(s) for t0 ≤ s ≤ tn,

wn+1(s) for tn ≤ s ≤ tn+1,

and η(s) is the continuous approximate solution computed by the method
itself up to tn.

Analogously, the standard approach for (8.2) consists in solving step by
step the local problems

w′
n+1(t) = f

(
t, wn+1(t), x

(
t− τ(t, wn+1(t))

)
, z

(
t− τ(t, wn+1(t))

))
,

for tn ≤ t ≤ tn+1,

wn+1(tn) = η(tn),
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where

x(s) =


φ(s) for s ≤ t0,

η(s) for t0 ≤ s ≤ tn,

wn+1(s) for tn ≤ s ≤ tn+1,

z(s) =


φ′(s) for s ≤ t0,

λ(s) for t0 ≤ s ≤ tn,

w′
n+1(s) for tn ≤ s ≤ tn+1,

η(t) is the continuous approximation of y(t) and λ(t) is an approximation
of y′(t) given by

λ(t) = η′(t) (8.4)

or by

λ(t) = P
(
f
(
·, η(·), η

(
· − τ(·, η(·))

)
, λ

(
· − τ(·, η(·))

)))
(t), (8.5)

where, in each mesh interval [tk, tk+1], P is an interpolation operator in a
suitable polynomial space of degree possibly other than deg(η′) and nodes
in [tk, tk+1].

Here we report a condensed survey on continuous RK methods for ODEs
as a basic tool for the implementation of the standard approach for RFDEs.
Then we provide the main results on the error analysis of the resulting
methods for equations (8.1) and (8.2), also in view of the particular issues
treated in the forthcoming Sections 9, 10 and 11. These topics are covered
in the book by Bellen and Zennaro (2003) and, hence, neither proofs nor
bibliographic references are given here.

8.1. Continuous RK methods for ODEs

Given a mesh ∆ = {t0, t1, . . . , tn, . . . , tN = tf}, a ν-stage RK method for
the numerical solution of the ODE

y′(t) = g(t, y(t)), t0 ≤ t ≤ tf ,

y(t0) = y0,
(8.6)

has the form (in the so-called Y notation)

Y i
n+1 = yn + hn+1

ν∑
j=1

aijg(t
j
n+1, Y

j
n+1), i = 1, . . . , ν, (8.7)

yn+1 = yn + hn+1

ν∑
i=1

big(tin+1, Y
i
n+1), (8.8)

where tin+1 = tn + cihn+1, ci =
∑ν

j=1 aij , i = 1, . . . , ν, hn+1 = tn+1 − tn
and ν is referred to as the number of stages. The bis are called weights of
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the quadrature formula (8.8) and the cis are called abscissae and, for most
common methods, they belong to [0, 1]. Since the RK method (8.7), (8.8)
is characterized by the weights bi and the matrix coefficients A = (aij)ν

i,j=1,
it will be denoted by (A, b, c). It is worth observing that in many papers
and books the RK formulae are written in an equivalent different form, the
so-called K notation. So the RK method (8.7), (8.8) takes the form

Ki
n+1 = g

(
tin+1, yn + hn+1

ν∑
j=1

aijK
j
n+1

)
, i = 1, . . . , ν,

yn+1 = yn + hn+1

ν∑
i=1

biK
i
n+1.

Note that K notation is obtained by setting

Ki
n+1 = g(tin+1, Y

i
n+1), i = 1, . . . , ν,

in (8.7), (8.8).
Although in developing and implementing RK methods for ODEs the

two notations are basically equivalent, in the application of RK methods to
DDEs it will often be preferable to adopt the K notation.

The computational complexity of the method is mainly determined by
the number of stages and by the form of the coefficient matrix A. It is
well known that when the matrix A is lower triangular with zero diagonal
elements, the method is called explicit and the computational cost is lower,
whereas when the matrix A is full, the method is called implicit and the
computational cost is higher.

The one-step interpolants of the RK method (8.7), (8.8) are constructed
step by step by making use of information from the underlying mesh interval
[tn, tn+1] only, possibly by including some additional stages, that is, by some
extra evaluations of the right-hand side function g(t, y) in (8.6).

Interpolants constructed using no extra stages are called interpolants of
the first class and the resulting continuous extension η(t) is defined, in each
subinterval of the mesh ∆, by a one-step continuous quadrature rule of the
form

η(tn + θhn+1) = yn + hn+1

ν∑
i=1

bi(θ)g(tin+1, Y
i
n+1), 0 ≤ θ ≤ 1, (8.9)

or, in K notation,

η(tn + θhn+1) = yn + hn+1

ν∑
i=1

bi(θ)Ki
n+1, 0 ≤ θ ≤ 1,

where the bi(θ)s are polynomials of suitable degree ≤ δ satisfying

bi(0) = 0 and bi(1) = bi, i = 1, . . . , ν, (8.10)
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so as to define a continuous piecewise polynomial function.
Interpolants constructed by means of additional stages are called inter-

polants of the second class and the continuous extension is given by

η(tn + θhn+1) = yn + hn+1

s∑
i=1

bi(θ)g(tin+1, Y
i
n+1), 0 ≤ θ ≤ 1, (8.11)

or, in K notation, by

η(tn + θhn+1) = yn + hn+1

s∑
i=1

bi(θ)Ki
n+1, 0 ≤ θ ≤ 1, (8.12)

where the bi(θ)s are again polynomials of suitable degree ≤ δ satisfying the
continuity conditions

bi(0) = 0, i = 1, . . . , s,
bi(1) = bi, i = 1, . . . , ν, (8.13)
bi(1) = 0, i = ν + 1, . . . , s.

The additional s− ν stages are given by

Y i
n+1 = yn + hn+1

s∑
j=1

aijg(t
j
n+1, Y

j
n+1), i = ν + 1, . . . , s, (8.14)

or, in K notation, by

Ki
n+1 = g

(
tin+1, yn + hn+1

s∑
j=1

aijK
j
n+1

)
, i = ν + 1, . . . , s,

so that the original coefficient matrix A = (aij)ν
i,j=1 is embedded into the

block lower triangular matrix

A′ =
(

A 0
(aij)

s,ν
i=ν+1,j=1 (aij)s

i,j=ν+1

)
. (8.15)

The overall continuous Runge–Kutta methods (8.7), (8.8), (8.9) and (8.7),
(8.8), (8.14), (8.11), denoted by (A, b(θ), c) and (A′, b(θ)), respectively, are
the continuous extensions of the RK method (A, b, c) and δ will be referred
to as the degree of the interpolant. In contrast, the method (A, b, c) will be
called the underlying (discrete) RK method.

It is worth remarking that, in general, η(tn + cihn+1) �= Y i
n+1. Neverthe-

less, equality holds for every right-hand side g(t, y) whenever bi(cj) = aji,
as appears evident by comparing (8.11) and (8.14). So we have{

η(tn + cihn+1) = Y i
n+1 ∀i

}
⇐⇒

{
bi(cj) = aji ∀i, j

}
. (8.16)

An interpolant, either of the first or second class, determines a matrix B,
whose elements are bij = bj(ci).
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Definition 8.1. A continuous RK method is called natural if A = B
(A′ = B).

As for the order of RK methods and their interpolants, we have the fol-
lowing definition.

Definition 8.2. We say that the RK method (8.7), (8.8) is consistent of
order (or, equivalently, has order) p if p ≥ 1 is the largest integer such that,
for all Cp-continuous right-hand side functions g(t, y) in (8.6) and for all
mesh points, we have that

|zn+1(tn+1) − yn+1| = O(hp+1
n+1),

uniformly with respect to y∗n in any bounded subset of R
d and to n =

0, . . . , N − 1, where zn+1(t) is the local solution to the local problem

z′n+1(t) = g(t, zn+1(t)), tn ≤ t ≤ tn+1,

zn+1(tn) = y∗n.
(8.17)

We say that the interpolant (8.9) or (8.11) is consistent of uniform order
(or, equivalently, has uniform order) q if q ≥ 1 is the largest integer such
that, for all Cq-continuous right-hand side functions g(t, y) and for all mesh
points, we have that

max
tn≤t≤tn+1

|zn+1(t) − η(t)| = O(hq+1
n+1).

The convergence results are summarized by the following theorem.

Theorem 8.1. Let the RK method (8.7), (8.8) be consistent of order p
and let the right-hand side function g(t, y) in (8.6) be Cp-continuous. Then
the method is convergent of order (or, equivalently, has global order) p on
any bounded interval [t0, tf ], that is,

max
1≤n≤N

|y(tn) − yn| = O(hp), (8.18)

where h = max1≤n≤N hn.
If the interpolant (8.9) or (8.11) has uniform order q, then the contin-

uous RK method (8.7), (8.8), (8.9) or (8.7), (8.8), (8.14), (8.11) is uni-
formly convergent of order (or, equivalently, has uniform global order) q′ =
min{p, q + 1}, that is,

max
t0≤t≤tf

|y(t) − η(t)| = O(hq′). (8.19)

We shall often refer to the order of consistency and to the order of conver-
gence of the RK method (8.7), (8.8) as the discrete order and the discrete
global order of the continuous RK method (8.7), (8.8), (8.9) or (8.7), (8.8),
(8.14), (8.11).
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The following theorem provides additional results on the derivatives of
the continuous extension.

Theorem 8.2. If, in addition to the hypotheses of Theorem 8.1, the in-
terpolant is a piecewise polynomial of degree δ ≥ q and the right-hand side
function g(t, y) in (8.6) is Cmax{δ,p}-continuous, then the following conver-
gence, boundedness and unboundedness estimates hold for the derivatives
of the global error function:

max
t0≤t≤tf

|y(j)(t) − η(j)(t)| = O(hq+1−j), j = 1, . . . , δ, (8.20)

where the derivatives of η(t) at the mesh points are taken in the left/right
sense.

The estimates (8.19) and (8.20) show that the first derivative retains the
global uniform order of the interpolant if and only if the interpolant has the
maximum attainable uniform order p. It is also evident that, in order to
get the uniform order q, the interpolant must be of degree δ ≥ q. On the
other hand, polynomials of degree δ > q are unnecessary, as shown by the
following theorem.

Theorem 8.3. Assume that the RK method (8.7), (8.8) has a continuous
extension η(t) of order q and degree d > q. Then there exists another
continuous extension η̃(t) of order q whose degree is also q.

Remark 8.1. By Theorems 8.2 and 8.3 we may observe that, not only
is the employment of interpolants of degree higher than q unnecessary, but
interpolants of degree δ > q + 1 are even dangerous in that the derivatives
of order k, with q + 2 ≤ k ≤ δ, may diverge as h→ 0. For these reasons we
shall assume that continuous extensions of order q will be always made by
interpolants of degree δ = q.

It is important to give an answer to the following two questions.

Question 1. What is the maximum uniform order an RK method of order
p can achieve by means of an interpolant of the first class?

Question 2. What is the (minimum) number of stages necessary to con-
struct a continuous RK method of uniform order p− 1 or even p?

So far, we can give the following upper bound to the uniform order of an
interpolant (for both classes).

Theorem 8.4. Assume that the RK method (8.7), (8.8) has a continuous
extension η(t) given by (8.11). Then its uniform order q cannot exceed s∗,
the number of distinct abscissae of the extended RK method represented
by (8.15).
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Table 8.1. Order conditions for
continuous RK methods.

Order Conditions

1
ν∑

i=1

bi(θ) = θ

2
ν∑

i=1

bi(θ)ci = 1
2θ

2

3

ν∑
i=1

bi(θ)c2i = 1
3θ

3

ν∑
i,j=1

bi(θ)aijcj = 1
6θ

3

4

ν∑
i=1

bi(θ)c3i = 1
4θ

4

ν∑
i,j=1

bi(θ)ciaijcj = 1
8θ

4

ν∑
i,j=1

bi(θ)aijc
2
j = 1

12θ
4

ν∑
i,j,k=1

bi(θ)aijajkck = 1
24θ

4

The above result is obvious after observing that formula (8.11) is a con-
tinuous quadrature rule based on exactly s∗ distinct abscissae.

Since the construction of interpolants of the second class is a rather tech-
nical matter, here we confine ourselves to analysing only the interpolants of
the first class and, consequently, we shall not give an answer to Question 2.
However, we shall briefly consider the direct construction of continuous RK
methods, without passing necessarily through interpolants of the second
class of a given discrete RK formula.

A general analysis of the uniform order for the continuous extension (8.9)
is based on the property that, for any 0 < θ ≤ 1, it can be viewed as the
discrete method (A

θ ,
b(θ)
θ , c

θ ) with step-size θhn+1. So, we immediately get
the uniform order conditions for the polynomials bi(θ) from the well-known
order conditions of the RK methods. The conditions up to order p = 4 are
shown in Table 8.1.

In order to answer Question 1, each method has to be analysed indi-
vidually by checking the order conditions. In general, we can give only a
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partial answer by means of the following theorem, the proof of which does
not directly involve the order conditions.

Theorem 8.5. Every RK method (8.7), (8.8) of order p ≥ 1 has a con-
tinuous extension η(t) of order (and degree) q = 1, . . . , �p+1

2 �.

Theorem 8.6. If an RK method (8.7), (8.8) has a continuous extension
η(t) of order (and degree) q ≥ 2, then it also has another continuous exten-
sion η̃(t) of order (and degree) q̃ for each q̃ ≤ q − 1.

In conclusion, we can answer Question 1 by saying that, in general, only
interpolants up to order �p+1

2 � are ensured to exist. On the other hand,
it might well be that the maximum uniform order reachable by means of
interpolants of the first class is actually > �p+1

2 � and, possibly, even = p.

Definition 8.3. We say that an RK method (8.7), (8.8) of discrete order
p is superconvergent if the maximum uniform order q reachable by means
of interpolants of the first class is ≤ p− 1.

In other words, superconvergence is attained at the end-point of the step-
interval with respect to the maximum uniform accuracy order q. Of course,
it might well be that the interpolant attains a higher order p′ > q, not
necessarily equal to the discrete order p, also at some additional points
inside the step-interval. They will be called inner superconvergence points.

Collocation methods
A particular class of continuous RK methods that has been studied exten-
sively are the one-step collocation methods. However, the interest in piece-
wise collocation is mostly due to the simplicity in determining the order of
convergence and superconvergence via the non-linear variation-of-constants
formula and to the optimal stability properties as discrete methods, rather
than to its intrinsically continuous nature.

The one-step collocation method can be defined as follows. Choose ν
distinct abscissae c1, . . . , cν ∈ [0, 1] and, in each mesh interval [tn, tn+1],
compute the polynomial η(t) of degree ≤ ν satisfying

η′(tin+1) = g
(
tin+1, η(t

i
n+1)

)
, i = 1, . . . , ν, η(tn) = yn.

It is easy to check that such methods can be rewritten as a continuous
implicit RK method (8.7), (8.9), where

aij =
∫ ci

0
�j(ξ) dξ, i, j = 1, . . . , ν,

bi(θ) =
∫ θ

0
�i(ξ) dξ, i = 1, . . . , ν,
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�i(ξ) being the Lagrange polynomial coefficient
ν∏

k=1,k �=i

ξ − ck
ci − ck

.

In particular, we have bi(cj) = aji and, therefore, any collocation method
is a natural continuous RK method.

For any choice of the abscissae c1, . . . , cν ∈ [0, 1], the collocation method
has order p ≥ ν and the uniform order of the interpolant (8.9) is q = ν.
Consequently, by Theorem 8.1, the collocation method is a continuous RK
method of global uniform order q′ = ν (if p = ν) or q′ = ν + 1 (if p > ν). In
this sense the collocation method is optimal in that it achieves the maximum
attainable uniform order for the given number of stages. In particular, if
the abscissae are the shifted roots of the Legendre orthogonal polynomial
of degree ν, then the method has order p = 2ν. This is the most famous
example of superconvergence.

Direct construction of continuous RK methods
So far we have considered continuous extensions of a priori given discrete
RK methods. Now we consider the other philosophy of constructing directly
a continuous RK method, without necessarily starting from a given discrete
formula.

As already pointed out in this section, a general analysis of the uniform
order for the continuous extensions (8.9) is based on the property that, for
any 0 < θ ≤ 1, it can be viewed as a discrete method

(
A
θ ,

b(θ)
θ , c

θ

)
with

scaled step-size θhn+1. So we immediately get the uniform order conditions
for the parameters ci and aij and for the polynomials bi(θ) from the well-
known order conditions of the RK methods (see Table 8.1 for conditions up
to order p = 4).

Let N(p) and CN(q) be the minimum number of stages for which there
exist RK methods of (discrete) order p and continuous RK methods of
uniform order q, respectively. Similarly, let EN(p) and CEN(q) be the same
quantities restricted to the class of explicit RK methods and continuous
explicit RK methods.

In the general case, it is well known that

N(p) =
⌊
p+ 1

2

⌋
and CN(q) = q

and that these optimal bounds are attained, for instance, by collocation
methods.

For explicit RK and continuous explicit RK methods the results are of-
ten obtained by making somewhat sophisticated analyses of the continuous
order conditions.
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Table 8.2. The minimum number of stages necessary for
an explicit RK method to attain the discrete order p.

p 1 2 3 4 5 6 7 8 ≥ 9

EN(p) 1 2 3 4 6 7 9 11 ≥ p+ 3

Table 8.3. The minimum number of stages necessary for
a continuous explicit RK method to attain the uniform
order q.

q 1 2 3 4 5 6 ≥ 7

CEN(q) 1 2 4 6 8 11 ≥ 2q − 2

All the order barriers for explicit methods are summarized in Tables 8.2
and 8.3.

Now we concentrate on continuous explicit RK methods with a minimum
number of stages CEN(q). It easily turns out that, for given q ≥ 2, a
whole family of such methods exists, which depends on a certain number of
parameters. So the parameters can be selected in order to guarantee some
nice properties of the method, such as minimization of a suitable estimate
of the local error constant and maximization of the absolute stability region
of the underlying discrete method.

Another nice characteristic of some continuous explicit RK methods is
the FSAL (first same as last) property. The FSAL property means that
the last stage can be re-used as the first stage K1

n+1 = g(tn+1, yn+1) of the
next step. This implies that the actual cost of the method is reduced by
one function evaluation per step. Of course, because the method is explicit,
the re-usable stage can be involved only for computation of the interpolant
η(tn + θhn+1) for θ �= 1 and not for computation of yn+1 = η(tn+1).

8.2. RK methods for DDEs

Once the continuous RK method
(
A, b(θ), c

)
is chosen, the standard ap-

proach for the DDE (8.1) turns out to be

η(tn + θhn+1) (8.21)

= yn + hn+1

s∑
i=1

bi(θ)f
(
tin+1, Y

i
n+1, η

(
tin+1 − τ(tin+1, Y

i
n+1)

))
,
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for 0 ≤ θ ≤ 1, and

Y i
n+1 = yn + hn+1

s∑
j=1

aijf
(
tjn+1, Y

j
n+1, η

(
tjn+1 − τ(tjn+1, Y

j
n+1)

))
, (8.22)

for i = 1, . . . , s.
In this section, the method will be called the RK method for DDEs or, in

short, the DDE method , and (A, b(θ), c) will be referred to as the underlying
continuous RK method.

Note that the use of RK methods with an abscissa ci > 1 could lead
to an advanced deviated argument tin+1 − τ(tin+1, Y

i
n+1) > tn+1, where the

continuous extension x(s) should be computed in some subsequent step.
Therefore, in order to avoid such a disappointing situation, we assume that
the abscissae satisfy the constraint

0 ≤ ci ≤ 1, i = 1, . . . , s. (8.23)

However, even under condition (8.23), it may well be that, for some index
i, the argument tin+1 − τ(tin+1, Y

i
n+1) of η(s) lies in the current interval

[tn, tn+1]. We shall call this occurrence overlapping. It is convenient to
define the spurious stage

Ỹ i
n+1 = η

(
tin+1 − τ(tin+1, Y

i
n+1)

)
which, in the case of overlapping, is given by formula (8.21) itself for

θ = θi
n+1 = ci −

τ(tin+1, Y
i
n+1)

hn+1
.

It is worth remarking that the overall method becomes implicit even if the
underlying continuous RK method is explicit. This makes a remarkable dif-
ference with respect to the explicit FCRK methods, described in Section 6,
which preserve their explicitness even in the case of overlapping.

On the contrary, if overlapping does not occur, the spurious stage is simply
given by the interpolant η(t) as computed in the past.

In any case, in the mesh interval [tn, tn+1] the method takes the form (in
Y notation)

η(tn + θhn+1) = yn + hn+1

s∑
i=1

bi(θ)f
(
tin+1, Y

i
n+1, Ỹ

i
n+1

)
, 0 ≤ θ ≤ 1,

(8.24)

Y i
n+1 = yn + hn+1

s∑
j=1

aijf
(
tjn+1, Y

j
n+1, Ỹ

j
n+1

)
, i = 1, . . . , s, (8.25)
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where the spurious stages Ỹ i
n+1 are implicitly given by

Ỹ i
n+1 = yn + hn+1

s∑
j=1

bj(θi
n+1)f

(
tjn+1, Y

j
n+1, Ỹ

j
n+1

)
(8.26)

if the overlapping condition tin+1 − τ(tin+1, Y
i
n+1) > tn holds, and by the

known value
Ỹ i

n+1 = η
(
tin+1 − τ(tin+1, Y

i
n+1)

)
(8.27)

otherwise.
Note that, whereas the system (8.24), (8.25), (8.27) has to be solved only

for the stage values Y j
n+1, j = 1, . . . , s, the system enlarged by (8.26) for

some i has to be solved also for the relevant spurious stages Ỹ i
n+1.

Indeed, the dimension of the system is not increased. In fact, by using K
notation

Ki
n+1 = f

(
tin+1, Y

i
n+1, Ỹ

i
n+1

)
,

we get the following system to be solved for Ki
n+1, i = 1, . . . , s:

η(tn + θhn+1) = yn + hn+1

s∑
i=1

bi(θ)Ki
n+1, 0 ≤ θ ≤ 1, (8.28)

Ki
n+1 = f

(
tin+1, yn + hn+1

s∑
j=1

aijK
j
n+1, Ỹ

i
n+1

)
, i = 1, . . . , s, (8.29)

where

Ỹ i
n+1 = yn + hn+1

s∑
j=1

bj

(
ci −

τ(tin+1, yn + hn+1
∑s

k=1 aikK
k
n+1)

hn+1

)
Kj

n+1

(8.30)
if the overlapping condition

tin+1 − τ

(
tin+1, yn + hn+1

s∑
k=1

aikK
k
n+1

)
> tn

holds, and

Ỹ i
n+1 = η

(
tin+1 − τ

(
tin+1, yn + hn+1

s∑
k=1

aikK
k
n+1

))
(8.31)

otherwise.
Despite it being impossible to express all RK methods for DDEs in terms

of the stage values Y i
n+1 only, there are particular classes, essentially col-

location methods, that allow us to express the spurious stages Ỹ i
n+1 in the

system (8.25) in terms of the Y i
n+1. This is the case for any natural con-
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tinuous RK method (see Definition 8.1) with s distinct abscissae c1, . . . , cs
such that ci �= 0, i = 1, . . . , s, and a continuous extension η(tn + θhn+1) of
degree s. In fact, in this case the polynomial η(t) may be written using the
Lagrange interpolation formula through the s + 1 values yn(= η(tn)) and
Y i

n+1(= η(tn + cihn+1)), i = 1, . . . , s, that is,

η(tn + θhn+1) = �0(θ)yn +
s∑

i=1

�i(θ)Y i
n+1, (8.32)

where �j , j = 0, . . . , s are the Lagrange polynomial coefficients relevant to
the nodes c0 = 0 and ci, i = 1, . . . , s. Therefore Ỹ i

n+1, which is equal to
η
(
tin+1 − τ(tin+1, Y

i
n+1)

)
, may be written using (8.32) for

θ = θi
n+1 = ci −

τ(tin+1, Y
i
n+1)

hn+1
.

The Gaussian collocation and Radau IIA methods satisfy the above condi-
tion and are natural choices for the construction of DDE methods.

For both Y and K notation, the method is well-posed for any sufficiently
small hn+1, as stated by the following theorem.

Theorem 8.7. (Well-posedness) Assume that the local problem (8.3)
possesses a unique solution wn+1(t). Then, for sufficiently small step-size
hn+1, equations (8.21)–(8.22) admit a unique solution η(t).

As for the convergence analysis of the DDE methods, we have the follow-
ing result, assuming we are able to compute and include the discontinuity
points in the mesh, even in the state-dependent delay case.

Theorem 8.8. (Convergence) Consider the DDE

y′(t) = f
(
t, y(t), y

(
t− τ(t, y(t))

))
, t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0,

where f(t, y, x) is Cp-continuous in [t0, tf ] × R
d × R

d, the initial function
φ(t) is Cp-continuous and the delay τ(t, y) is Cp-continuous in [t0, tf ]×R

d.
Moreover, assume that the mesh ∆ = {t0, t1, . . . , tn, . . . , tN = tf} includes
all the discontinuity points lying in [t0, tf ] where the solution y(t) is not at
least Cp-continuous. If the underlying continuous RK method has discrete
order p and uniform order q, then the DDE method (8.24), (8.25), (8.26),
(8.27) has discrete global order and uniform global order q′ = min{p, q+1},
that is,

max
1≤n≤N

|y(tn) − yn| = O(hq′)

and
max

t0≤t≤tf
|y(t) − η(t)| = O(hq′),
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where h = max1≤n≤N hn.

According to Theorem 8.8, if the underlying continuous RK method has
discrete order p and uniform order q, then we can either be satisfied with a
DDE method with, possibly lower, uniform global order q′ = min{p, q+ 1},
or increase the uniform order of the underlying interpolant up to at least
p− 1 in order to preserve the uniform global order p.

We can summarize the last option in the following corollary.

Corollary 8.1. Under the hypotheses of Theorem 8.8 with q ≥ p− 1, the
continuous numerical solution η(t) is such that

max
t0≤t≤tf

|y(t) − η(t)| = O(hp).

Theorem 8.8 and Corollary 8.1 just guarantee that, by using an inter-
polant of order p− 1, the global order p of the discrete method is preserved
for any choice of the mesh. A sharper error estimate and convergence anal-
ysis of the standard approach reveals that, under some restrictions on the
mesh, the condition q = p − 1 is no longer necessary for the method to
preserve the global order p. In other words, superconvergence is possible.
On the other hand, an efficient DDE code ought to be implemented in a
variable step-size mode by performing the error control. In this case, if we
try to estimate the local error by a method of higher order p + 1, uniform
approximation of order p − 1 for the deviated arguments y(t − τ) is not
sufficient and must be raised to p. For a deep analysis of these aspects, we
again refer the interested reader to Bellen and Zennaro (2003).

We remark that the DDE method with underlying continuous RK method(
A, b(θ), c

)
provides an approximation of the solution map of form (5.3). In

particular, we have

V (tn, ηtn , hn+1) = πKn+1,

where π is the prolongation operator defined in (6.4) and

Kn+1 = (K1
n+1, . . . ,K

ν
n+1) ∈ (Rd)ν .

Consequently, Theorem 8.8 above may also be obtained as a corollary to
the general convergence Theorem 5.1.

It is also worth remarking that a DDE method based on a natural contin-
uous RK method (A, b(θ), c) (see Definition 8.1) provides the same approx-
imation of the solution map as the one provided by the particular implicit
FCRK method (A(θ), b(θ), c), where

aij(θ) = bj(θ), i, j = 1, . . . , ν.

In fact, for such an FCRK method, all the stage functions Y i, i = 1, . . . , ν,
coincide with the function η(t− tn), t ∈ (−∞, hn+1]. On the contrary, if the
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underlying continuous RK method is not natural, then the DDE method
does not fall into the class of FCRK methods introduced in Section 6.

Consequently, the well-posedness result expressed by Theorem 8.7 may
also be obtained as a corollary to Theorem 6.1 only when the underlying
continuous RK method is natural.

RK methods for NDDEs
With respect to the NDDE (8.2), for the choice (8.4), the DDE method
(8.22) and (8.21) in Y notation modifies to the following RK method for
NDDEs:

Y i
n+1 = yn + hn+1

s∑
j=1

aijf
(
tjn+1, Y

j
n+1, Ỹ

j
n+1, Z̃

j
n+1

)
, (8.33)

for i = 1, . . . , s,

η(tn + θhn+1) = yn + hn+1

s∑
i=1

bi(θ)f
(
tin+1, Y

i
n+1, Ỹ

i
n+1, Z̃

i
n+1

)
, (8.34)

for 0 ≤ θ ≤ 1, and

λ(tn + θhn+1) =
s∑

i=1

b′i(θ)f
(
tin+1, Y

i
n+1, Ỹ

i
n+1, Z̃

i
n+1

)
, (8.35)

for 0 ≤ θ ≤ 1, where

Ỹ j
n+1 = η

(
tjn+1 − τ(tjn+1, Y

j
n+1)

)
and Z̃j

n+1 = λ
(
tjn+1 − τ(tjn+1, Y

j
n+1)

)
.

Note that, for the arguments sj = tjn+1 − τ(tjn+1, Y
j
n+1), the values η(sj)

and λ(sj) may or may not be known. If overlapping occurs, that is if, for
some index i, the argument si > tn, then the spurious stages Ỹ i

n+1 and Z̃i
n+1

are unknown, and are given by (8.34) and (8.35) for

θ = θi
n+1 = ci −

τ(tin+1, Y
i
n+1)

hn+1
,

that is,

Ỹ i
n+1 = yn + hn+1

s∑
j=1

bj(θi
n+1)f

(
tjn+1, Y

j
n+1, Ỹ

j
n+1, Z̃

j
n+1

)
,

Z̃i
n+1 =

s∑
j=1

b′j(θ
i
n+1)f

(
tjn+1, Y

j
n+1, Ỹ

j
n+1, Z̃

j
n+1

)
.

On the contrary, if the arguments of η(s) and λ(s) lie outside the cur-
rent interval [tn, tn+1], then the values Ỹ j

n+1 and Z̃j
n+1 are given by the
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interpolants η(s) and η′(s) as computed at the past points

tin+1 − τ(tin+1, Y
i
n+1) = tn+1−m + θhn+1−m

for suitable values of m and θ.
As with DDEs with no neutral terms, the spurious stages Ỹ i

n+1 and Z̃i
n+1,

if any, only apparently increase the dimension of the system to be solved at
each step. In fact, by using K notation

Ki
n+1 = f

(
tin+1, Y

i
n+1, Ỹ

i
n+1, Z̃

i
n+1

)
,

all the stages Y i
n+1, Ỹ

i
n+1 and Z̃i

n+1, as well as the arguments θi
n+1, turn out

to depend on Ki
n+1 only.

Remark 8.2. As in the non-neutral case, for any natural continuous RK
method with s distinct abscissae c1, . . . , cs such that ci �= 0, i = 1, . . . , s,
and continuous extension η(t) of degree s, the system to be solved at each
step may be stated in terms of the sole Y i

n+1s. In fact, the polynomial
η(tn + θhn+1) may be written using the Lagrange interpolation formula
through the s+1 values yn(= η(tn)) and Y i

n+1(= η(tn+cihn+1)), i = 1, . . . , s,
that is,

η(tn + θhn+1) = �0(θ)yn +
s∑

i=1

�i(θ)Y i
n+1, (8.36)

where �j , j = 0, . . . , s are the Lagrange polynomial coefficients on the nodes
c0 = 0 and ci, i = 1, . . . , s. Therefore, Ỹ i

n+1 = η
(
tin+1 − τ(tin+1, Y

i
n+1)

)
may

be written by (8.36) for θ = θi
n+1 = ci − τ(tin+1, Y

i
n+1)/hn+1. Similarly,

Z̃i
n+1 = λ(tin+1 − τ(tin+1, Y

i
n+1)) may be written by using the derivative of

(8.36) for θ = θi
n+1.

For the choice (8.5), the RK method for NDDEs (in Y notation) is given
by (8.33), (8.34) along with

λ(tn + θhn+1) =
s∗∑

i=0

�i(θ)f
(
t̄in+1, U

i
n+1, Ũ

i
n+1, Ṽ

i
n+1

)
, 0 ≤ θ ≤ 1, (8.37)

where t̄in+1 = tn + c̄ihn+1 and �i(θ), i = 0, . . . , s∗, are the nodes and the
Lagrange polynomial coefficients of the interpolation operator P. Here,
besides the values

Ỹ j
n+1 = η

(
tjn+1 − τ(tjn+1, Y

j
n+1)

)
and Z̃j

n+1 = λ
(
tjn+1 − τ(tjn+1, Y

j
n+1)

)
,

there are additional values

U j
n+1 = η

(
t̄jn+1

)
,

Ũ j
n+1 = η

(
t̄jn+1 − τ(t̄jn+1, U

j
n+1)

)
and Ṽ j

n+1 = λ
(
t̄jn+1 − τ(t̄jn+1, U

j
n+1)

)
.
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Note that, according to the argument sj = tjn+1−τ(t
j
n+1, Y

j
n+1), the values

η(sj) and λ(sj) may or may not be known. If sj > tn, then Ỹ j
n+1 and Z̃j

n+1
are unknown and must be computed by (8.34) and (8.37), respectively. In
particular, for the application of (8.37) in the current interval, U j

n+1, Ũ
j
n+1

and Ṽ j
n+1 need to be known. Here the U j

n+1s are certainly unknown, whereas
knowledge of Ũ j

n+1 and Ṽ j
n+1 depends on the location of the further argument

t̄jn+1 − τ(t̄jn+1, U
j
n+1).

Summarizing, if for some index j some of the arguments are > tn, then
the relevant spurious stages Ỹ j

n+1, Z̃
j
n+1, U

j
n+1, Ũ

j
n+1 or Ṽ j

n+1 are unknown
and are given by (8.34) and (8.37) for suitable values of θ. More precisely,

Ỹ j
n+1 = η(tn + θj

n+1hn+1) and Z̃j
n+1 = λ(tn + θj

n+1hn+1)

with θj
n+1 = cj − τ(tjn+1, Y

j
n+1)/hn+1,

U j
n+1 = η(tn + c̄jhn+1),

Ũ j
n+1 = η(tn + θ̄j

n+1hn+1) and Ṽ j
n+1 = λ(tn + θ̄j

n+1hn+1)

with θ̄j
n+1 = c̄j − τ(t̄jn+1, U

j
n+1)/hn+1.

The dimension of the system may still be reduced by using K notation
but, unlike option (8.4), as well as the K values

Kj
n+1 = f

(
tjn+1, Y

j
n+1, Ỹ

j
n+1, Z̃

j
n+1

)
, j = 1, . . . , s,

we have the additional values

Hj
n+1 = f

(
t̄jn+1, U

j
n+1, Ũ

j
n+1, Ṽ

j
n+1

)
, j = 0, . . . , s∗.

Remark 8.3. As with option (8.5), the number of unknowns in the sys-
tem to be solved at each step may be reduced. In fact, if the underlying
continuous RK method is natural and if the interpolation formula (8.37) is
based on the nodes c̄i = ci, i = 1, . . . , s∗ = s, and on another node c̄0 �= ci,
then, for j = 1, . . . , s,

Y j
n+1 = U j

n+1,

Ỹ j
n+1 = Ũ j

n+1,

Z̃j
n+1 = Ṽ j

n+1,

and, therefore, also
Hj

n+1 = Kj
n+1.

In this case the spurious stages reduce to only Y j
n+1, Ỹ

j
n+1 and Z̃j

n+1 in Y
notation, and to merely

Kj
n+1 = f

(
tjn+1, Y

j
n+1, Ỹ

j
n+1, Z̃

j
n+1

)
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in the equivalent K notation. Note also that, for the new set of stage values

Zj
n+1 = λ(tn + cjhn+1), j = 1, . . . , s,

by (8.37) we have

Zj
n+1 = Kj

n+1.

On the other hand, independently of the choice of the c̄is, if ci �= 0,
i = 1, . . . , s, as in the non-neutral case, we can express each Ỹ j

n+1 in terms
of the Y j

n+1s and, hence, the overall method is based on the stage values
Y j

n+1 and Z̃j
n+1. However, in no case can the RK method reduce to just the

Y values.

The convergence result extending Theorem 8.8 may be stated as follows.

Theorem 8.9. Consider the state-dependent NDDE (8.2), where the right-
hand side f(t, y, x, w) is Cp-continuous in [t0, tf ]× R

d × R
d × R

d, the delay
τ(t, y) is Cp-continuous in [t0, tf ] × R

d and the initial function φ(t) is Cp-
continuous. Moreover, assume that the mesh ∆ = {t0, t1, . . . , tn, . . . , tN =
tf} includes all the discontinuity points lying in [t0, tf ] where the solution
y(t) is not at least Cp-continuous. If the underlying continuous RK method(
A, b(θ), c

)
has discrete order p and uniform order q, and the approxima-

tion λ(t) has uniform order r, then the resulting RK method for NDDEs
has discrete global order and uniform global order q′ = min{p, q+ 1, r+ 1},
that is,

max
1≤n≤N

|y(tn) − yn| = O(hq′)

and
max

t0≤t≤tf
|y(t) − η(t)| = O(hq′),

where h = max1≤n≤N hn. In particular, if λ(t) is given by the option (8.4),
then r = q − 1 and, hence, q′ = q.

Note that, for the option (8.5), λ(t) is given by (8.37) and the interpolation
operator P has order r = s∗. Therefore, on the basis of Theorem 8.9, it is
useless to take s∗ > q. On the other hand, the choice s∗ = q preserves the
optimal order q′ = min{p, q+1} and makes the option (8.5), along with the
conditions in Remark 8.3, preferable to (8.4).

Finally, it is worth remarking that, when the option (8.4) is adopted, the
RK method for NDDEs yields an approximation of the solution of the form
(5.3). On the contrary, this is not the case when the other option (8.5)
is used.

Therefore, the above convergence result can also be obtained as a corollary
to the general convergence Theorem 5.2 only if option (8.4) is adopted.
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9. Implementation issues in the standard approach

We have seen in the previous section that two points are important for an
efficient and accurate implementation of the standard approach, namely lo-
cation of the breaking points, if any, as defined in Section 3 and detection
of possible overlapping. From a practical point of view, it would be impor-
tant to answer a priori the following two questions which are particularly
difficult when the delay is state-dependent:

(Q1) Whether or not, for the local problem (8.3), overlapping occurs and, in
particular, whether or not the approximated delayed function η(t−τ)
is known at a given point t of the current interval [tn, tn+1], so as to
make the right choice between (8.26) and (8.27) (or between (8.30)
and (8.31)) for the computation of the Ỹ i

n+1s.

(Q2) Whether or not, for the step-size hn+1, the current interval [tn, tn+1]
includes some breaking point ξ and, more specifically, how to tune the
step-size hn+1 in order to have tn+1 = ξ, as we would like to have in
the proximity of ξ, as required by Theorems 8.8 and 8.9.

As far as question (Q1) is concerned, overlapping can be avoided for a
sufficiently small step-size by assuming that:

(H1) There exists a constant τ0 > 0 such that τ(t, y(t)) ≥ τ0 for all t ∈
[t0, tf ].

Moreover, when the delay is actually state-dependent, it is often welcome to
be able to assume the stronger condition (already considered in Section 3):

(H∗
1 ) There exists a constant τ0 > 0 such that τ(t, z) ≥ τ0 for all t ∈ [t0, tf ]

and z ∈ R
d.

In fact, (H∗
1 ) prevents the state-dependent delay from vanishing even if it

is computed in a perturbation of the true local solution wn+1(t) of (8.3).
Under the hypothesis (H∗

1 ) on the delay, for sufficiently small step-size,
namely hn+1 = tn+1 − tn ≤ τ0, the function η(s) is known for every s =
t − τ(t, z) with t ∈ [tn, tn+1] and for all z ∈ R

d. Therefore, overlapping is
avoided for any approximation of the local solution wn+1(t).

On the contrary, if hn+1 > τ0, it might well be that

t− τ(t, wn+1(t)) > tn

for some t ∈ (tn, tn+1] and, consequently, overlapping could occur.
When the hypothesis (H1), or (H∗

1 ), does not hold, the delay τ necessarily
vanishes at some point ξ and, thus, overlapping inevitably occurs whenever
the interval (tn, tn+1] includes ξ. This occurrence leads to some complica-
tions in the case of state-dependent delays. In fact, in this case, we cannot
choose between (8.26) or (8.27) ((8.30) or (8.31)) a priori , and the choice
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may vary during the computation of the Ỹ i
n+1s. This point will be deeply

investigated in Section 11, as well as considering the neutral case.
As for question (Q2), the location of breaking points has been discussed

by various authors from both the theoretical and implementational per-
spectives. Two approaches have been pursued in the literature. They are
based, respectively, on discontinuity tracking, that is, on a direct compu-
tation of discontinuities from the deviated arguments (see, e.g., Willé and
Baker (1992)) and on defect control (see, e.g., Enright, Jackson, Nørsett
and Thomsen (1988) and Shampine and Thompson (2000)).

The first, usually referred to as the tracking of discontinuities, is based
on finding the discontinuities ξk,j satisfying

ξk,j − τ
(
ξk,j , wn+1(ξk,j)

)
= ξk−1,i for some i

(see (3.6)) and to include them as mesh points. It is just worth mentioning
that for state-dependent delays the task appears very hard to accomplish.
How to do this, and how to achieve the accuracy necessary for preserving the
order of the overall integration procedure, is presented later in this section.
Although expensive, this strategy appears the most robust.

The second approach, relying on step-size control, gives up tracking the
discontinuities, which are instead assumed to be automatically included in
the mesh by suitable variable step-size strategies based on the estimation
of the local error or on the computation of the defect. In general, the codes
are simpler but undergo a larger number of rejected steps and may lead
to a sequence of very small step-sizes in the neighbourhood of a low-order
discontinuity point ξ.

9.1. Tracking the breaking points

An accurate tracking of breaking points is important in order to compute
and automatically insert them into the mesh of integration. We shall discuss
this topic here in the context of DDEs and, in Section 10, in the even more
challenging context of NDDEs.

Although the approach can be extended to any DDE method, here we
consider collocation methods with ν distinct abscissae c1, . . . , cν such that
ci �= 0, i = 1, . . . , ν, whose continuous approximation at the nth step is
expressed in the form

η(tn + θhn+1) =
ν∑

i=0

�i(θ)Y i
n+1, θ ∈ [0, 1],

where Y 0
n = yn and the abscissa c0 = 0 is added to the other abscissae of

the method (see (8.32)). The algorithms we are going to describe here are
extensively discussed in Guglielmi and Hairer (2008) and implemented in
the code Radar5 by Guglielmi and Hairer (2001). They are mainly intended
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for state-dependent delays, but they may be used in general because they
are designed with the aim of computing only those breaking points which
are important in terms of the required accuracy.

To compute the set B of breaking points recursively, we start by initial-
izing B = {t0}. Then the iteration step consists in finding the zeros of the
function

d∗ζ(t) = α
(
t, y(t)

)
− ζ, (9.1)

where ζ ∈ B is a previous breaking point. However, since y(t) cannot be
found exactly, we have to consider a suitable approximation η(t), e.g., the
continuous extension of the collocation method, and solve the approximate
equation

dζ(t) = α
(
t, η(t)

)
− ζ. (9.2)

The solution ξ of this equation is added to B.
The novel method we present is split into two phases: a first one, where

the presence of a breaking point is detected, and a second one, where the
breaking point is actually computed.

Detection and accurate computation of breaking points
For a given step-size h, the first phase consists in checking the possible
presence of a breaking point in the interval [tn, tn + h]. To this end we
consider the continuous extension computed at the previous accepted step,

η̂(tn−1 + θhn) =
ν∑

i=0

�i(θ)Y i
n, θ ≥ 1,

to be used for extrapolation in the current step.
After setting h as a predicted new step-size, we look for zeros of the

functions

dζ(θ) = α
(
tn−1 + θhn, η̂(tn−1 + θhn)

)
− ζ, θ ∈ [1, 1 + h/hn],

for all previously computed breaking points ζ ∈ B. The presence of a new
breaking point is guessed if dζ(tn) · dζ(tn + h) < 0 for some ζ ∈ B. This
idea is related to that used by Enright and Hayashi (1997) in their explicit
solver.

Let ξ[0] be the detected breaking point, that is, the solution of the equation

α
(
ξ[0], η̂(ξ[0])

)
− ζ = 0. (9.3)

In general, ξ(0) provides a poor approximation to the exact breaking point
due to the fact that we are making use of an extrapolation of the collocation
polynomial η̂. Note that a better approximation of the solution in [tn, tn+h]
could reveal the absence of breaking points, i.e., of solutions for (9.3) in
that interval.
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In any case, once a breaking point is detected inside the interval [tn, tn+h],
we assume it actually exists and, hence, we try to compute it accurately in
order to preserve the high order and accuracy of the numerical method. The
heuristic, which we shall explain theoretically and illustrate experimentally,
is that of coupling the RK equations and the equation for the breaking
point (9.2).

Therefore, we consider the system of the RK equations (see (8.24)–(8.27))
coupled with (9.2), that is,

0 = α
(
tn + hn+1, η(tn + hn+1)

)
− ζ, (9.4)

Y i
n+1 = yn + hn+1

ν∑
j=1

aijf
(
tn + cjhn+1, Y

j
n+1, Ỹ

j
n+1

)
, i = 1, . . . , ν, (9.5)

which is solved with respect to both the stages Y 1
n+1, . . . , Y

ν
n+1 and the step-

size hn+1.
If equations (9.4)–(9.5) are solved successfully, the point ξ = tn + hn+1 is

inserted into the set of computed breaking points B.
Since we are considering collocation methods, we have to solve (9.4)–(9.5)

by a Newton process, especially if the problem is stiff. However, instead of
applying it to the whole system, it is convenient to split the problem in
order to take advantage of its structure.

Solving (9.4)–(9.5) by an iterative scheme
For given hn+1 the system (9.5) is usually solved by the well-known simpli-
fied Newton iteration that exploits the structure of the Jacobian (see, e.g.,
Hairer and Wanner (1996)). In order to solve (9.4)–(9.5) efficiently with
respect to the unknowns {Y i

n+1} and hn+1, it would be important not to
lose such a structure (see Guglielmi and Hairer (2001, 2008)).

Aiming to preserve the block-diagonal structure, it is possible to solve
the system (9.4)–(9.5) in an iterative way. In particular, we denote by
Y

j [k]
n+1 , j = 1, . . . , ν, and h

[k]
n+1 the stage values and the step-size at the kth

iteration of the iterative process (this means that tn+h[k]
n+1 gives the current

approximation of the breaking point).
Starting with h

[0]
n+1 = ξ[0] − tn, where ξ[0] is the approximation to the

breaking point obtained solving (9.3) in the detection phase, and using
some initial approximation to the stage values obtained, for example, by
extrapolation from the previous step, we consider the following two-step
iteration.

(I1) Solve equation (9.4) with respect to the unknown h[k+1]
n+1 , i.e.,

0 = α
(
tn + h

[k+1]
n+1 , η

[k](tn + h
[k+1]
n+1 )

)
− ζ, (9.6)
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with fixed stage values
{
Y

j [k]
n+1

}ν

j=1
, that is, with a fixed vector-valued

polynomial η[k] given by

η[k]
(
tn + θh

[k]
n+1

)
=

ν∑
i=0

�i(θ)Y
i [k]
n+1, θ ≥ 0.

(I2) Solve the system (9.5) with respect to the unknowns
{
Y

j [k+1]
n+1

}ν

j=1

with fixed step-size h[k+1]
n+1 by means of a simplified Newton iteration,

i.e.,

Y
i [k+1]
n+1 = yn + h

[k+1]
n+1

ν∑
j=1

aijf
(
tn + cjh

[k+1]
n+1 , Y

j [k+1]
n+1 , Ỹ

j [k+1]
n+1

)
,

for i = 1, . . . , ν, (9.7)

where Ỹ j [k+1]
n+1 = η

(
α(tn + cjh

[k+1]
n+1 , Y

j [k+1]
n+1 )

)
.

It is clear that, assuming that the iterative scheme converges, its efficiency
depends on the speed of convergence. The following lemma shows that this
iterative method converges (see Guglielmi and Hairer (2008) for the proof).
Although linear, the convergence turns out to be fast, since the convergence
ratio depends on the νth power of the step-size.

Lemma 9.1. Assume that the solution h
[k+1]
n+1 of (9.6) is simple for all k

and that the simplified Newton iteration applied to (9.7) converges in a
suitable neighbourhood of hn+1. Then,∣∣h[k+1]

n+1 − hn+1

∣∣ ≤ C ·
(
h

[k]
n+1

)ν ·
∣∣h[k]

n+1 − hn+1

∣∣,
where hn+1 is the exact solution of (9.4)–(9.5) and C a suitable constant.

In practice we have experienced that the required accuracy is achieved
after very few iterations. This implies that the cost is only slightly greater
than that of the standard step (for which no breaking point is detected),
since it essentially consists of solving (9.5) a small number of times.

In fact, in the code Radar5, which implements the described procedure,
the possible presence of a breaking point is not checked at every step but,
instead, the function dζ(t) is monitored only in the following cases:

(i) if the Newton process does not converge,
(ii) if the estimated error is not under the given required tolerance,
(iii) if the estimated error increases with respect to the previous step of a

factor larger than a prescribed value (the default value is 5).

Unlike most of the previous strategies, in this way one computes only
those breaking points that are relevant to the required accuracy.
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Other authors have considered techniques for approximating the breaking
points (see, e.g., Feldstein and Neves (1984) and Hauber (1997)). The
algorithm of Feldstein and Neves (1984) checks at all steps whether

dζ(tn + θhn+1) = α
(
tn + θhn+1, η(tn + θhn+1)

)
− ζ (9.8)

changes sign for some ζ ∈ B. In such a case, the zero of dζ is computed and
the new breaking point is inserted in B. Note that the use of η to compute
the new breaking point is not reliable in general. In fact, in the current
integration interval the solution would not be smooth and consequently
η(t) would be a bad approximation of the solution. A modification of this
idea was considered by Hauber (1997), who proposed extrapolating the
continuous output of the preceding step, i.e., to replace (9.8) by

dζ(tn−1 + θhn) = α
(
tn−1 + θhn, η̂(tn−1 + θhn)

)
− ζ, θ > 1.

Although this idea allows us to overcome the problem due to the lack of
smoothness of the solution, using the collocation polynomial computed in
the interval [tn−1, tn] for t > tn may also determine an inaccurate com-
putation. The work of Enright and Hayashi (1997) also uses this kind of
extrapolation to cross breaking points.

The basic idea presented here is related to the fact that, in the algorithm
which computes the RK step, the step-size is not fixed but variable. This
allows for a more accurate computation of breaking points and for an im-
provement of the convergence theorem, as illustrated below by Theorem 9.1.

9.2. Convergence and accuracy of breaking points

This section is devoted to illustrating the theoretical aspects associated with
the solution of (9.4)–(9.5).

Accuracy of the computed breaking points
Concerning the coupling of the Runge–Kutta equations and the equation
for the breaking point (9.4)–(9.5), the following error bound is obtained (see
Guglielmi and Hairer (2008) for the proof).

Theorem 9.1. Let y(t) be the solution of (8.1) and let ζ∗ and ξ∗ be exact
breaking points of the problem such that α

(
ξ∗, y(ξ∗)

)
= ζ∗. Furthermore,

let ζ be an approximation of ζ∗. If

d
dt

(
α(t, y(t))

)∣∣
t=ξ∗ �= 0, (9.9)

then the computed breaking point ξ = tn +hn+1, obtained by solving (9.4)–
(9.5), satisfies the error estimate

|ξ − ξ∗| ≤ C
(
‖yn+1 − y(tn+1)‖ + |ζ − ζ∗|

)
for some constant C > 0.
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This means that the breaking points are computed to the same order as
the numerical solution at grid points.

Although the order is the same as that obtained using an extrapolation
of the dense output computed in the previous interval (see (9.3)), the error
constant is expected to be much smaller. Usually, in fact, stiffly accurate
collocation methods such as Radau-IIA methods exhibit an error at mesh
points which is much smaller than the uniform error in the integration inter-
val. Therefore, making breaking points to coincide with mesh points should
improve accuracy, as is actually confirmed by several numerical experiments.

Convergence
By means of Theorem 9.1 above, it is easy to refine Theorem 8.8 and to
avoid the assumption that the mesh contains all the exact breaking points
where the solution y(t) is not at least Cp-continuous.

Theorem 9.2. (Convergence) Consider the DDE

y′(t) = f
(
t, y(t), y

(
α(t, y(t))

))
, t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0,

with simple breaking points (i.e., (9.9) holds). Assume that the hypotheses
of Theorem 8.8 hold except that, instead of the exact breaking points, those
obtained by solving (9.4)–(9.5) are included in the mesh.

If the underlying collocation method has discrete order p (and uniform
order q = ν), then the DDE method (8.24)–(8.27) has discrete global order
and uniform global order q′ = min{p, ν + 1}.

Table 9.1. Numerical results for equation (9.10), where FE stands
for the number of function evaluations, ERR for the error at the
final point and ERRBP for an average error in the computation of
the breaking points.

Radar5: old version Radar5: new version

− log (tol) FE ERR FE ERR ERRBP

2 94 0.41 10−1 97 0.13 10−3 0.55 10−4

4 146 0.55 10−3 147 0.14 10−5 0.63 10−6

6 247 0.40 10−3 198 0.32 10−7 0.13 10−7

8 443 0.15 10−5 276 0.60 10−9 0.25 10−9

10 733 0.85 10−7 490 0.52 10−10 0.21 10−10

12 1622 0.85 10−9 932 0.46 10−12 0.20 10−12
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Figure 9.1. The solution of (9.10)
and its numerical approximation.

Example 9.1. Consider the equation (see Neves (1975) and Paul (1994))

y′(t) =
y(t) y(log (y(t)))

t
, 1 ≤ t ≤ 8,

y(t) = 1, t ≤ 1.
(9.10)

The exact solution is

y(t) =


1, t < ξ∗0 ,

t, ξ∗0 ≤ t < ξ∗1 ,

et/e, ξ∗1 ≤ t < ξ∗2 ,

· · · · · · · · · · · ·

and the breaking points are ξ∗0 = 1 (of order 0), ξ∗1 = e (of order 1), ξ∗2 = e2

(of order 2), etc.
Table 9.1 shows the numerical integration of (9.10) by the code Radar5.

In version 1.1 of the code the breaking points were not computed explicitly,
but only implicitly, through the error control, and the step-size was simply
driven by error estimates. In the current version, 2.1, an explicit compu-
tation of the breaking points is implemented, according to the algorithm
previously described, which solves (9.4)–(9.5).

In Figure 9.1 we show the exact solution and its numerical approximation,
obtained with relative and absolute error tolerances per step, Rtol = Atol =
5 · 10−5. The computed breaking points are

ξ1 = 2.71828358623074 · · · ,
ξ2 = 7.38905155206748 · · · .
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The first numerical breaking point is essentially exact because the solution
is linear in the first interval. The second numerical breaking point has an
error |ξ2 − ξ∗2 | = 4.5469 · 10−6. The number of accepted steps is 13 and
the number of rejected steps is 2. The relative error at the final point is
ERR ≈ 1.001 · 10−4.

10. Neutral problems with state-dependent delays

Now we consider neutral problems of the form (8.2). Without loss of gen-
erality, we focus our attention on systems in autonomous form

y′(t) = f
(
y(t), y

(
α(y(t))

)
, y′

(
α(y(t))

))
, t0 ≤ t ≤ tf ,

y(t) = φ(t), t ≤ t0,
(10.1)

where, as usual, α(y(t)) denotes the deviated argument.
In general, at the initial point t0 the right-hand derivative

y′(t0) = f
(
φ(t0), φ

(
α(φ(t0))

)
, φ′

(
α(φ(t0))

))
is different from the left-hand derivative φ′(t0), i.e., it does not satisfy the
splicing condition (4.6) assumed in Theorem 4.5. This irregularity at t0 is
propagated by the deviated argument α(y(t)) to further breaking points,
where the first derivative of the solution is not continuous.

Due to such jump discontinuities in the first derivative of the solution,
because of a breaking point, problem (10.1) has to be considered as a dis-
continuous differential equation (see, e.g., Filippov (1964, 1988)). Moreover,
the delay being state-dependent, existence and uniqueness of a classical so-
lution are no longer assured, independently of the regularity of f . Therefore,
the solution might either terminate, or even bifurcate, in the presence of a
breaking point. This leads us in a natural way to consider weak (or gen-
eralized) solutions, which may allow the integrator to prolong the solution
beyond those breaking points where the classical solution ceases to exist.
To this end, we consider some possible regularizations, and define weak so-
lutions to be the limits of the solutions of the regularized problems as the
regularization parameters tend to zero.

As in Baker and Paul (2006) and Bellen and Guglielmi (2009), we give
the following definition where, with respect to Definition 1.1, the value of
y′ is assigned at any point of the integration interval. As before, we let B
denote the set of breaking points.

Definition 10.1. We say that a function y(t) is a solution to problem
(10.1) in [t0, tf ] if:

(i) it is continuous on [t0, tf ];
(ii) it is continuously differentiable in [t0, tf ] \ B;
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(iii) it satisfies (10.1) in [t0, tf ] \ B;

(iv) at those breaking points ξ ∈ B where (10.1) is not satisfied, we have

lim
t↘ξ

y′(t) = f
(
y(ξ), y

(
α(y(ξ))

)
, z

)
,

where
z = lim

t↘ξ
y′
(
α(y(t))

)
.

Thus y′(t) is the usual two-sided derivative for all t ∈ [t0, tf ], except for
the breaking points ξ where (10.1) is not satisfied. At such points we take
it to be the one-sided right derivative lim

t↘ξ
y′(t).

In general, for neutral equations there is no smoothing effect. Therefore,
breaking points of order zero may be propagated throughout the integration
interval.

Since Theorem 4.5 is not applicable, in order to study the existence of a
solution, we make the assumption that the set B is finite.

10.1. Neutral problems as discontinuous differential equations

Let ξ > ζ be a breaking point of order zero, that is,

α(y(ξ)) = ζ,

where ζ is a previous breaking point, the ancestor of ξ, where the derivative
of the solution has a jump discontinuity.

Let
x+(s) = y(s) for s ≥ ζ,

x−(s) = y(s) for s < ζ,
(10.2)

and let x′+(s) and x′−(s) be the corresponding derivatives.
Since we assumed that the set B is finite, they are defined and smooth in

a suitable neighbourhood of ζ. Then we can locally write problem (10.1) in
the form

y′(t) = h(y(t)) =


h+(y(t)) if α(y(t)) > ζ,

h−(y(t)) if α(y(t)) < ζ,

h+(y(ξ)) if t = ξ and α(y(t)) ↗ ζ,

h−(y(ξ)) if t = ξ and α(y(t)) ↘ ζ,

(10.3)

where

h+(y(t)) = f
(
y(t), x+

(
α(y(t))

)
, x′+

(
α(y(t))

))
,

h−(y(t)) = f
(
y(t), x−

(
α(y(t))

)
, x′−

(
α(y(t))

))
.

(10.4)
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M

n(ȳ)
ȳ

h+

h−

Figure 10.1. The vector fields h+ and h− and the normal n
to the manifold oriented towards the region {y | g(y) > 0}.

Note that (10.3) is a differential equation with discontinuous right-hand
side. In fact, the discontinuity occurs at at t = ζ, where

x′+
(
α(y(ξ))

)
�= x′−

(
α(y(ξ))

)
.

On the contrary, the solution is continuous, i.e., x+
(
α(y(ξ))

)
= x−

(
α(y(ξ))

)
.

Let us introduce the so-called switching function

g(y(t)) = α(y(t)) − ζ, (10.5)

whose zeros identify the instants when the right-hand side of (10.4) switches
from h+ to h− or vice versa.

If we introduce the manifold

M = {y | g(y) = 0},
which separates the two regions where the vector field of the differential
equation is smooth, we have the situation illustrated in Figure 10.1.

Consider ȳ ∈ M, that is, g(ȳ) = 0, and assume that t̄ is such that y(t̄) = ȳ.
Then let ∇ denote the gradient with respect to y and set

n(ȳ) =
∇g(ȳ)

‖∇g(ȳ)‖ if ∇g(ȳ) �= 0.

Finally, consider the quantities〈
n(ȳ), h+(ȳ)

〉
and

〈
n(ȳ), h−(ȳ)

〉
. (10.6)

If the conditions 〈
n(ȳ), h+(ȳ)

〉
< 0,〈

n(ȳ), h−(ȳ)
〉
> 0,

(10.7)

occur, then the vector fields h+ and h− have a normal direction with respect
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1.01.0

00 ξ = 1

y1 y+
1

y−1

ξ = 1

y′1

y′+1

y′−1

Figure 10.2. The solution of (10.9) terminates at ξ = 1.

to the manifold at ȳ which is oriented towards the manifold itself. This
means that the classical solution to (10.3) ceases to exist. This situation is
illustrated in Figure 10.1.

On the contrary, in the two cases when〈
n(ȳ), h+(ȳ)

〉
·
〈
n(ȳ), h−(ȳ)

〉
> 0, (10.8)

a unique classical solution keeps on existing in a right neighbourhood of t̄.
Finally, if

〈
n(ȳ), h+(ȳ)

〉
> 0,

〈
n(ȳ), h−(ȳ)

〉
= 0 and

〈
n(y), h−(y)

〉
≤

0 in a neighbourhood of ȳ (or in the specular case
〈
n(ȳ), h−(ȳ)

〉
< 0,〈

n(ȳ), h+(ȳ)
〉

= 0 and
〈
n(y), h+(y)

〉
≥ 0 in a neighbourhood of ȳ) two

solutions are admissible, so that uniqueness is lost.

Example 10.1. Let us consider the system

y′1(t) = 1 − 2 y′1(y1(t) − 1),

y′2(t) = 2 − 1
2
y′2(y1(t) − 1),

(10.9)

with initial data y1(t) = y2(t) ≡ 0 for t ≤ 0.
The solution exists until t = 1 and is given by y1(t) = t, y2(t) = 2 t. Then

it terminates at t = ξ = 1.
We have

ȳ =
(

1
2

)
, ∇g(ȳ) =

(
1
0

)
, h+(ȳ) =

(
−1
1

)
, h−(ȳ) =

(
1
2

)
.

We see that conditions (10.7) are satisfied. In fact,〈
∇g(ȳ), h+(ȳ)

〉
= −1,〈

∇g(ȳ), h−(ȳ)
〉

= 1.

This implies termination of the classical solution.



92 A. Bellen, N. Guglielmi, S. Maset and M. Zennaro

y1

y2

q

p

g(y) > 0

g(y) < 0

Figure 10.3. Problem (10.9) reformulated
as a discontinuous differential equation.

In other words, as illustrated in Figure 10.2, we can explain termination by
considering, for t ∈ [1, 1+ δ] with δ sufficiently small, the pair of differential
equations

y′+(t) = h+(y+(t)),

y′−(t) = h−(y−(t)),
(10.10)

where

h+
(
y+(t)

)
= q =

(
−1
1

)
and h−

(
y−(t)

)
= p =

(
1
2

)
. (10.11)

We have that y+(t) is a local solution of the considered neutral problem
(10.9) if y+

1 (t) − 1 > 0 for t ∈ (1, 1 + δ] and that y−(t) is a local solution of
(10.9) if y−1 (t) − 1 < 0 for t ∈ (1, 1 + δ]. Since y+

1 (t) = 2 − t and y−1 (t) = t,
none of the previous conditions is fulfilled (see Figure 10.2).

Since y′(y1(s)− 1) = H(y1(s)− 1) until y1(s) ≤ 2, H being the Heaviside
function, the problem (10.9) can be reformulated, at least locally, as the
discontinuous differential equation

y′(t) =

{
p if g(y) < 0,
q if g(y) > 0,

(10.12)

where g(y) = y1 − 1 (see Figure 10.3).
This is the case of a system of ODEs with a vector field which is dis-

continuous on a linear manifold M = {y | g(y) = 0} = {y | y1 = 1} of
codimension 1. Furthermore, the vector field is constant on the two half-
spaces separated by the manifold.
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10.2. Regularization by a time average of the discontinuous vector field

Let ξ be a termination point. Following Fusco and Guglielmi (2009), we
consider for t > ξ the regularized problem

y′ε(t) =
1
ε

∫ t

t−ε

[
H
(
g(yε(s))

)
h+(yε(s)) +

(
1 −H

(
g(yε(s))

))
h−(yε(s))

]
ds,

(10.13)
where H denotes the Heaviside function and yε(t) = φ(t), t ≤ ξ, φ being
a C1-function. Our goal is that of studying the existence of a solution for
sufficiently small ε > 0 and that of investigating the limit behaviour of such
solutions as ε −→ 0+.

Theorem 10.1. (Existence) Let g, h−, h+ be smooth functions. Then
there exists ε0 > 0 such that ∀ε ∈ (0, ε0), there exist T > 0 and C > 0,
independent of ε, such that the problem (10.13) has a C1-solution yε :
[ξ, ξ + T ] → R

d with

• |g(yε(t))| ≤ Cε, t ∈ [ξ, ξ + T ].

Moreover, there exists a C1-function y0 such that

• g(y0(t)) ≡ 0;

• lim
ε→0

‖yε − y0‖C0[ξ,ξ+T ] = 0;

• y′0(t) = µ(t)h+(y0(t)) + (1 − µ(t))h−(y0(t)) ∈ Ty0M with µ(t) ∈ [0, 1],
t ∈ [0, T ];

where M = {y | g(y) = 0} is the manifold delimiting the two smooth regions
of the vector fields and Ty0M is the linear manifold tangent to M at y0(t).

According to Theorem 10.1, the dynamics of the limit solution y0 takes
place in the manifold M.

Then it is natural to define a weak solution of the problem (10.1) after a
termination point as the solution of the limit problem(

I 0
0 0

)(
y′(t)
µ′(t)

)
=

(
h(t, y(t), µ(t))
ζ − α(y(t))

)
, (10.14)

I being the identity matrix and

h(t, y(t), µ(t)) = µ(t) f(t, y(t), y(ζ), x′+(ζ))

+ (1 − µ(t)) f(t, y(t), y(ζ), x′−(ζ)),

with consistent initial data (y(ξ), µ(ξ)) at t = ξ.
This system includes the constraint α(y(t)) = ζ and, hence, is a differ-

ential-algebraic equation of index 2. It replaces the original problem (10.1)
for t ≥ ξ until a classical solution is recovered.
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10.3. Neutral problems as implicit delay equations

In view of the numerical integration of (10.1), by introducing a new variable
z(t) = y′(t), we rewrite it as the equivalent implicit system(

I 0
0 0

)(
y′(t)
z′(t)

)
=

(
z(t)

−z(t) + f
(
y(t), y

(
α(y(t))

)
, z

(
α(y(t))

))), (10.15)

with the initial conditions y(t) = φ(t), z(t) = φ′(t), t ≤ t0, where I denotes
the identity matrix.

Note that (10.15) falls in the general class of implicit problems

M u′(t) = f
(
u(t), u

(
α(t, u(t))

))
, t0 ≤ t ≤ tf ,

u(t) = ψ(t), t ≤ t0,

where the d× d matrix M is constant and possibly singular, which will be
studied in Section 11.

Regularization by a singular perturbation
Following Bellen and Guglielmi (2009), as a regularization of (10.15) we
consider the singularly perturbed problem(

I 0
0 εI

)(
y′ε(t)
z′ε(t)

)
=

(
zε(t)

−zε(t) + f
(
yε(t), yε

(
α(yε(t))

)
, zε

(
α(yε(t))

))),
(10.16)

which coincides with (10.15) for ε = 0.
Under standard assumptions on f , problem (10.16) admits a solution on

a bounded interval for any fixed ε > 0. If the initial datum (yε, zε) = (φ, ψ)
is continuous, then the corresponding solution is also continuous.

Although a theoretical analysis of the limit of the solution of (10.16) as
ε → 0 is still missing, the numerical experiments provided by Bellen and
Guglielmi (2009) suggest that a limit solution exists.

Example 10.2. We consider problem (10.9) again, i.e.,

y′1(t) = 1 − 2 y′1(y1(t) − 1),

y′2(t) = 2 − 1
2
y′2(y1(t) − 1),

with initial data y1(t) = y2(t) ≡ 0 for t ≤ 0, y1(t) = t, y2(t) = 2t for
0 ≤ t ≤ 1. We have seen that ξ = 1 is a termination point.

The regularized problem of the form (10.13) is

y′ε(t) =
1
ε

∫ t

t−ε

[
H
(
g(yε(s))

)
q +

(
1 −H

(
g(yε(s))

))
p
]
ds, (10.17)
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yε
1

1.003

1.10
0.997
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Figure 10.4. The solution component yε
1 for ε = 10−2.

where the vector fields p and q are constant and the corresponding manifold
M is linear.

The solution of (10.17) can be found explicitly. The first component
yε
1 is periodic of period 2ε and continuously differentiable for t ≥ 1 (see

Figure 10.4). It is given by

yε
1(t) =

 1 + (t− 1) − (t−1)2

ε , 1 ≤ t ≤ 1 + ε,

1 − (t− 1 − ε) + (t−1−ε)2

ε , 1 + ε ≤ t ≤ 1 + 2ε,

in the interval [1, 1 + 2ε] and is repeated periodically for t ≥ 1 + 2ε. The
second component yε

2 is given by the sum of a periodic function and of a
linear function

yε
2(t) =

3
2
t+

1
2
yε
1(t), t ≥ 1.

Note that, for all t≥1, the solution remains ε-close to the manifold

M = {y | y1 = 1}.

We also observe that y1 and y2 converge in the C0-topology as ε→ 0, that
is, there exist

y0
1(t) = lim

ε→0
yε
1(t) = 1, (10.18)

y0
2(t) = lim

ε→0
yε
2(t) =

3
2
t+

1
2
. (10.19)

Hence, y0
1 and y0

2 naturally represent the weak solution to the original prob-
lem (10.9).
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y1
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y1

y2

q

p

g(y) > 0

g(y) < 0 p+q
2

M

Figure 10.5. The limit problem associated to (10.17).

By (10.14), for t ≥ 1 we get(
I 0
0 0

)(
y′(t)
µ′(t)

)
=

(
µ(t) q + (1 − µ(t)) p

y1(t) − 1

)
. (10.20)

The consistent initial value for µ is µ(1) = 1
2 .

By differentiating twice the constraint y1(t) ≡ 1, we get

µ′(t)(p1 − q1) = 0 =⇒ µ′(t) = 0,

which yields

µ(t) =
1
2
.

As a consequence, for t ≥ 1 the weak solution satisfies the equation

y′(t) =
p

2
+
q

2
=

(
0

3/2

)
. (10.21)

According to Theorem 10.1, the right-hand side of (10.20) gives the unique
convex combination of p and q which lies on the manifold M (see Fig-
ure 10.5). This agrees with the definition of generalized solution of the
discontinuous problem given in Filippov (1964, 1988).

Now, we consider the second proposed regularization (10.16), i.e.,

y′ε1 (t) = zε
1(t),

y′ε2 (t) = zε
2(t),

εz′ε1 (t) = 1 − 2 zε
1

(
yε
1(t) − 1

)
− zε

1(t),

εz′ε2 (t) = 2 − 1
2
zε
2

(
yε
1(t) − 1

)
− zε

2(t),

(10.22)

with initial data yε
1(t) = yε

2(t) = zε
1(t) = zε

2(t) ≡ 0 for t ≤ 0.
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Figure 10.6. The first component of the solution of (10.22)
in a neighbourhood of ξ = 1 (computed for ε = 1/100).

The first component yε
1 of the solution has the behaviour shown in Fig-

ure 10.6.1 In particular, it is still ε-close to the manifold M and its limit
as ε → 0 still coincides with (10.18). In any case, yε

1 does not exhibit the
oscillations of the previous regularizaton (compare to Figure 10.4). From
a numerical point of view, the oscillations whose wavelength is of order ε
constitute a challenging difficulty.

10.4. The numerics of weak solutions

Concerning the numerical approximation of weak solutions, we have two
options: one is that of integrating, when required, the limit problem (10.14)
and the other is that of approximating it by integrating the regularized
problems (10.13) or (10.16).

Alternating the integration of (10.14) and (10.1) implies a repeated event
detection and a possible change of problem whenever (10.7) occurs, as well
as when the weak solution is such that〈

n(y(t∗)), h+(y(t∗))
〉
·
〈
n(y(t∗)), h−(y(t∗))

〉
= 0

at some instant t∗. On the contrary, the numerical integration of the regu-
larized problems does not require this. Nevertheless, due to the high oscilla-
tions, the numerical integration of (10.13) appears quite expensive, whereas
integrating the singularly perturbed problem (10.16) seems to be cheaper.
In any case, step-size restrictions are to be expected whenever some com-
ponent of the z-variables (the solution derivatives) has a jump. Indeed,
such jumps correspond to steep transitions of the same component of the
zε variables.

1 The asymptotic value 1 + ε log (2) of yε
1 was obtained using an asymptotic expansion

of the solution, by E. Hairer, to whom we are grateful.
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10.5. Numerical integration of neutral problems in implicit form

In order to integrate (10.15), it is natural to consider the method

(
Y i

n+1 − yn

0

)
= hn+1


ν∑

j=1
aijZ

j
n+1

ν∑
j=1

aij

(
−Zj

n+1 + f
(
Y j

n+1, Ỹ
j
n+1, Z̃

j
n+1

))
,

for i = 1, . . . , ν, (10.23)

where

Ỹ j
n+1 =

{
φ(αj

n+1) if αj
n+1 < t0,

η(αj
n+1) if tm ≤ αj

n+1 < tm+1,

for some m ≤ n and

Z̃j
n+1 =

{
φ′(αj

n+1) if αj
n+1 < t0,

λ(αj
n+1) if tm ≤ αj

n+1 < tm+1,

with αj
n+1 = α(Y j

n+1).
The continuous approximation η(t) is still given by (8.32) and, for the

continuous approximation λ(t), one can consider two options. The first is
chosen if tm is not a computed breaking point and is given by

λ(tm + θhm+1) =
ν∑

i=0

�i(θ)Zi
m+1, θ ∈ [0, 1], (10.24)

where Z0
m+1 = zm. The second option is chosen when tm is a computed

breaking point and is given by

λ(tm + θhm+1) =
ν∑

i=1

�̂i(θ)Zi
m+1, θ ∈ [0, 1], (10.25)

where �̂i(θ), i = 1, . . . , ν, are the Lagrange polynomials of degree ν − 1
involving the collocation abscissae c1, . . . , cν only.

Observe that the choice (10.24)–(10.25) also provides a generally dis-
continuous approximation of the solution derivative z(t) at the computed
breaking point tm, according to the fact that, in general, the solution y(t)
is only C0-continuous at breaking points.

In the case where αj
n+1 ∈ (tn, tn+1], i.e., when the corresponding delay

is smaller than the current step-size, η(αj
n+1) and λ(αj

n+1) are not known
a priori , but only implicitly through the current stage values which are still
to be computed.

For a non-singular coefficient matrix A (this is the case, for example, for
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Gauss and Radau IIA methods), (10.23) gives

Zj
n+1 = f

(
Y j

n+1, Ỹ
j
n+1, Z̃

j
n+1

)
, j = 1, . . . , ν,

whereas the first row remains

Y i
n+1 = yn + hn+1

ν∑
j=1

aijZ
j
n+1, i = 1, . . . , ν.

In the case of overlapping, for some j we may have

Ỹ j
n+1 = η(tn + θj

n+1hn+1) =
ν∑

i=0

�i(θ
j
n+1)Y

i
n+1

and

Z̃j
n+1 = λ(tn + θj

n+1hn+1) =
ν∑

i=0

�i(θ
j
n+1)Z

i
n+1,

where θj
n+1 = αj

n+1/hn+1. Therefore, all the approximated delayed terms
Ỹ j

n+1 and Z̃j
n+1 may be written in terms of Y j

n+1 and Zj
n+1. It turns out

that these are the same values provided by the approach described in Sec-
tion 8 with the option (8.5) for the neutral equations in the form (10.1).
Consequently, the two approaches are equivalent and the method converges
according to Theorem 8.9, which holds under the crucial assumption that
exact breaking points are included in the mesh ∆.

10.6. Checking existence and uniqueness numerically

Whenever the solution ceases to exist, a code which has not been designed
to check termination typically stops the integration after the step-size has
been reduced to a minimal value. This is certainly inconvenient, since the
cause of this arrest would remain unclear. Hence it is important to check
the possible termination numerically.

For ȳ = y(ξ) ∈ R
d such that g(ȳ) = α(ȳ) − ζ = 0, we must compute the

sign of scalar products (10.6), or equivalently of

〈
∇g(ȳ), h+(ȳ)

〉
=

d∑
i=1

∂α

∂yi
(y(ξ)) fi(y(ξ), y(ζ), x′+(ζ)), (10.26)

〈
∇g(ȳ), h−(ȳ)

〉
=

d∑
i=1

∂α

∂yi
(y(ξ)) fi(y(ξ), y(ζ), x′−(ζ)), (10.27)

where fi denotes the ith component of f .
The idea for a numerical investigation is based on the observation that,

for a point ȳ ∈ M, we can approximate (10.6) in the following way. Ac-
cording to Hairer and Wanner (1996) and Guglielmi and Hairer (2008), by
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considering a first-order approximation of g(ȳ + δ h±(ȳ)), we get

g(ȳ + δ h±(ȳ)) = g(ȳ) + δ
〈
∇g(ȳ), h±(ȳ)

〉
+ O(δ2).

For a small δ > 0, exploiting the property g(ȳ) = 0 yields〈
∇g(ȳ), h+(ȳ)

〉
≈ 1
δ
g(ȳ + δ h+(ȳ)), (10.28)〈

∇g(ȳ), h−(ȳ)
〉
≈ 1
δ
g(ȳ + δ h−(ȳ)). (10.29)

Note that this corresponds to applying a step of the Euler method to the
pair of problems

y′(t) = h+(y(t)) and y′(t) = h−(y(t))

with step-size δ.
Let tn = ξ∗ (approximating ξ) and tm = ζ∗ (approximating ζ) be a

numerical breaking point and its ancestor, respectively. Then let

λ−(t) = λ(t), t ∈ [tm−1, tm),

λ+(t) = λ(t), t ∈ [tm, tm+1),

be the polynomial extensions of the derivative of the solution on the right-
hand and left-hand side of the breaking point tm, respectively. Such poly-
nomials are clearly well defined in a whole neighbourhood of tm. Observe
that, in general, we expect that λ+(tm) �= λ−(tm).

Now, in order to proceed, it is sufficient to replace x′+(s) and x′−(s) by
λ+(s) and λ−(s) in (10.1) (see Guglielmi and Hairer (2008)). Then, with

y+
n = yn + δf(yn, ym, λ

+(tm)) and y−n = yn + δf(yn, ym, λ
−(tm)),

by using (10.4)–(10.5) and (10.28)–(10.29), at yn we obtain〈
∇g(yn), h+(yn)

〉
≈ a+

δ =
α(tn + δ, y+

n ) − tm
δ

,

〈
∇g(yn), h−(yn)

〉
≈ a−δ =

α(tn + δ, y−n ) − tm
δ

.

(10.30)

If a+
δ · a−δ > 0, so that the solution continues to exist, the integration

proceeds with the right-hand limit of z(t) at tn. On the contrary, if a+
δ < 0

and a−δ > 0, the solution ceases to exist at tn. Finally, if a+
δ ≈ 0 or a−δ ≈ 0,

a further analysis could determine whether the solution bifurcates at tn.

10.7. Accuracy and breaking points

As in the non-neutral case, we want to overcome the need to include the ex-
act breaking points in the mesh ∆. Moreover, with the use of the differential-
algebraic formulation (10.15), we also intend to control the error in the z
variable, that is, in the derivative of the solution y.
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In line with (9.4)–(9.5), we couple the RK equations (10.23) to the equa-
tion for the breaking point ξ (with ancestor ζ) whenever the presence of a
breaking point has been detected, so as to obtain the system

0 = α
(
η(tn + hn+1)

)
− ζ, (10.31)

(
Y i

n+1 − yn

0

)
= hn+1


ν∑

j=1
aijZ

j
n+1

ν∑
j=1

aij

(
−Zj

n+1 + f
(
Y j

n+1, Ỹ
j
n+1, Z̃

j
n+1

))
,

for i = 1, . . . , ν, (10.32)

for the unknowns Y 1
n+1, . . . , Y

ν
n+1, Z

1
n+1, . . . , Z

ν
n+1 and hn+1.

We still assume that the breaking points are simple, i.e.,

d
dt

(
α(y(t))

)∣∣
t=ξ

�= 0, (10.33)

and we get the following analogous result to Theorem 9.2 (see Guglielmi
and Hairer (2008)).

Theorem 10.2. Consider a smooth problem (10.1) with simple breaking
points (i.e., (10.33) holds) and with non-vanishing delay satisfying the hypo-
thesis (H1) (see Section 9) and assume that, instead of the exact breaking
points, those obtained by solving (10.31)–(10.32) are inserted into the mesh.

If the underlying collocation method has discrete order p (and uniform
order q = ν), then the resulting method for the NDDE (10.1) still has
discrete global order and uniform global order q′, where q′ = min{p, ν + 1}.

If one considers the ν-stage Radau IIA methods, whose classical order
is p = 2ν − 1, with interpolants η(t) and λ(t) of uniform order q = ν, the
NDDE method converges with global uniform order q′ = ν+1 for any ν ≥ 2.
Such order results hold for any step-size, including the case of overlapping.
The 3-stage method is used, for example, in the code Radar5.

Concerning the accuracy of the z variable, we cannot obtain any uniform
estimate if we do not use a simple trick. As a matter of fact, for problems
with state-dependent delays it is not possible to obtain uniform bounds to
the global error of z. In fact, if a mesh point tn is a numerically computed
breaking point, the corresponding exact breaking point is slightly different
in general. If the solution derivative has a jump discontinuity at this point,
here the global error might be large independently of h.

It is possible to bypass this difficulty by comparing the solution derivative
and its numerical approximation at slightly different times. In particular,
Guglielmi and Hairer (2008) proved that

λ(t) − z(s) = O(hq′),
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Figure 10.7. The solution component z of equation (10.34) and its
numerical approximation (left); logarithm of the error of the numerical
approximation of z in a neighbourhood of the breaking point ξ (right).

where s = s(t) is a suitable smooth function which satisfies s = t + O(hq′)
and h = maxn≥1 hn.

Example 10.3. Let us consider the equation

y′(t) = y′(y(t)) +
1
5
y(t), 2 ≤ t ≤ 5,

φ(t) = (t− 1)2, t ≤ 2.
(10.34)

Figure 10.7 shows that the derivative of the solution is completely in-
accurate in a neighbourhood of the breaking point ξ∗ = 4.130469677 · · ·
of amplitude proportional to the error tolerance (which, in the specific
case, is Rtol = Atol = 10−4). In fact, the computed breaking point is
ξ = 4.130454 · · · .

11. Implicit problems with state-dependent delays

As anticipated in the previous section, here we face the study of implicit
systems of DDEs of the general form

M u′(t) = f
(
u(t), u

(
α(t, u(t))

))
, t0 ≤ t ≤ tf ,

u(t) = ψ(t), t ≤ t0,
(11.1)

where the d× d matrix M is constant and possibly singular.
Note that, for the sake of simplicity, we consider the autonomous case

with a single deviated argument.
Besides NDDEs, this class of problems also includes singularly perturbed

problems and, since we allowM to be singular, a variety of delay differential-
algebraic equations (see, e.g., the models in Shampine and Gahinet (2006)).
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11.1. The numerical scheme

Consider an implicit collocation method

M(U i
n+1 − un) = hn+1

ν∑
j=1

aijf
(
U j

n+1, Ũ
j
n+1

)
, i = 1, . . . , ν, (11.2)

un+1 = un + hn+1

ν∑
i=1

bif
(
U i

n+1, Ũ
i
n+1

)
,

with ν distinct abscissae c1, . . . , cν such that ci �= 0, i = 1, . . . , ν, where
Ũ i

n+1 is an approximation to u(α(u(tn + cihn+1))) defined by

Ũ i
n+1 =

{
φ(αi

n+1) if αi
n+1 < t0,

η(αi
n+1) if αi

n+1 ≥ t0,
(11.3)

where, in turn,
αi

n+1 = α(U i
n+1).

As in (8.32), the continuous approximate solution is given by

η(tn + θhn+1) =
ν∑

i=0

�i(θ)U i
n+1, θ ∈ [0, 1), (11.4)

where U0
n+1 = un and c0 = 0.

If the mesh point tn is a computed breaking point, in the step [tn, tn+1]
the polynomial (11.4) can optionally be replaced by

η(tn + θhn+1) =
ν∑

i=1

�i(θ)U i
n+1, θ ∈ [0, 1],

which interpolates the internal stage values only, but not un (see Guglielmi
and Hairer (2001)). The use of this option is important in the presence of
a jump discontinuity in some component of the solution, since it permits to
have also a discontinuity in the continuous approximation of the solution.
Hence, in general, we have η(tn) �= un.

As usual, for overlapping, that is, when αj
n+1 ∈ (tn, tn+1] for some j,

the term η
(
αj

n+1

)
is not known a priori , but only implicitly through the

unknown stage values U1
n+1, . . . , U

ν
n+1.

11.2. Computing the breaking points

As for the neutral case examined in the previous section, the computation
of the breaking points is based on the coupling of the system of the Runge–
Kutta equations (11.2) and of the equation for the breaking point

0 = α
(
tn + hn+1, η(tn + hn+1)

)
− ζ. (11.5)
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Generalizing what we have explained in Section 10.7, in this case it is
possible to prove the following result (which is stated in Guglielmi and
Hairer (2008)).

Theorem 11.1. Consider a smooth problem (11.1) with simple breaking
points, i.e., such that

d
dt

(
α(u(t))

)∣∣
t=ξ∗ �= 0,

and with non-vanishing delay satisfying the hypothesis (H1) (see Section 9).
Moreover, assume that the uniform global error of the RK method (11.2) is
of size O(hr) (h = maxn≥1 hn) if the exact breaking points of order ≤ r are
inserted into the mesh.

Then, if, instead of the exact breaking points, those computed by solving
(11.2)–(11.5) are used, the global error of the resulting method satisfies

max
t0≤t≤tf

|u(s) − η(t)| = O(hr), (11.6)

where s = s(t) is a suitable smooth function such that s(t) = t+ O(hr).

The proof is based on an error estimate for the computed breaking points
which is analogous to that proved for explicit problems (see Theorem 9.1)
and on the classical convergence proof. The only additional difficulty lies in
the fact that, for the discontinuous components, it is necessary to align the
computed and the exact breaking points in order to obtain a significant error
bound. Such an alignment is based on the error estimate |ξ − ξ∗| = O(hr)
between the computed and the exact breaking point. As a consequence, the
global error |u(t) − η(t)| is still of size O(hr) in [t0, tf ], except for all the
small intervals of the type [ξ, ξ∗], whose size is O(hr). This is consistent
with what we have shown in Figure 10.7 for Example 10.3.

11.3. Solving the RK equations

In this section we focus on the solution of the RK equations in the particular
case when overlapping occurs. The RK system (11.2) has the form

F i
n+1

(
U1

n+1, . . . , U
ν
n+1, Ũ

1
n+1, . . . , Ũ

ν
n+1

)
= 0, i = 1, . . . , ν, (11.7)

for the unknowns U1
n+1, . . . , U

ν
n+1, where

F i
n+1 = M(U i

n+1 − un) − hn+1

ν∑
j=1

aijf
(
U j

n+1, Ũ
j
n+1

)
.

We recall that
Ũ j

n+1 = η(αj
n+1) if αj

n+1 > t0.
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We are interested in solving (11.7) by means of a suitable iterative Newton
process. For sake of conciseness, we omit the dependence of F i

n+1, U
j
n+1,

Ũ j
n+1 and αj

n+1 on n. Moreover, we denote by f(u, ũ) the function on the
right-hand side of (11.1).

In order to obtain an accurate computation of the derivatives of F i, we
consider the approximation

∂F i

∂Uk
≈M δik − hn+1 (aik D

k + D̂k), (11.8)

where δik is the Kronecker delta and

Dk =
∂f

∂u
(Uk, Ũk) +

∂f

∂ũ
(Uk, Ũk) η′(αk)

∂α

∂u
(Uk),

D̂k =
ν∑

j=1

aij
∂f

∂ũ
(Uk, Ũk)

∂Ũ j

∂Uk
.

Note that the term ∂Ũj

∂Uk = 0 if the deviated argument αj ≤ tn. More
precisely, since

η(tn + θhn+1) =
ν∑

k=0

�k(θ)Uk, θ ∈ [0, 1),

in the current interval, we get

∂Ũ j

∂Uk
= Ujk Id,

where Id denotes the d× d identity matrix and

U jk =

{
�k(θj) if θj > 0,
0 otherwise,

(11.9)

with

θj =
(
αj − tn

)
/hn+1.

In order to reduce computation, we simplify (11.8) by approximating all
derivatives of the functions f and α by

∂α

∂u
(Uk) ≈ ∂α

∂u
(un), (11.10)

∂f

∂u ∂ũ
(Uk, Ũk) ≈ ∂f

∂u ∂ũ
(un, ũn), (11.11)

where ũn = η(α0) and α0 = α(un). As a consequence, we expect the Newton
process to be linearly convergent.
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11.4. General form of the Jacobian

In order to solve (11.7) by means of a Newton process, consider the Jacobian

J = I ⊗M − hn+1A⊗
(
∂f

∂u
+
∂f

∂ũ
η′(α0)

∂α

∂u

)
− hn+1A · U ⊗ ∂f

∂ũ
. (11.12)

In general, J has a full structure and does not admit any transformation
allowing for a reduction in the cost of its LU -factorization.

Structure of the Jacobian in the case without overlapping
However, when no overlapping occurs, that is, when α(U j) < tn for all
j = 1, . . . , ν, we have U = O and, therefore,

J = J0 = I ⊗M − hn+1A⊗B0, (11.13)

where

B0 =
∂f

∂u
+
∂f

∂ũ
η′(α0)

∂α

∂u
.

Then, as in the ODE case (see, e.g., Butcher (1976)), if the RK matrix
A is invertible, the matrix J0 can be pre-multiplied by (hn+1A)−1 ⊗ Id. In
such a case it is useful to transform A−1, so as to obtain a block-diagonal
matrix D

T−1A−1 T = D

(see, e.g., Hairer and Wanner (1996)). By introducing the transformed
variables W = (T−1 ⊗ Id)U , we obtain an equivalent Newton iteration with
Jacobian

Ĵ0 = h−1
n+1D ⊗M − I ⊗B0. (11.14)

Such a matrix has block-diagonal structure and, thus, the computational
cost for its factorization is much cheaper than that of J .

11.5. Preserving the tensor structure of the Jacobian

Unfortunately, in the case of overlapping the previous transformation is
not possible. However, an analogous transformation of the Jacobian J to
block-diagonal structure is possible if we approximate the matrix U by

U ≈ γ Iν for an optimal γ ∈ R,

where Iν stands for the ν × ν identity matrix.
The iteration with no overlapping corresponds to having γ = 0. In gen-

eral, simply approximating J by J0 may prevent the Newton iteration from
convergence or make it very slow (see the examples by Castleton and Grimm
(1973) and by Waltman (1978) studied in Guglielmi (2005)).
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A better choice consists in choosing an optimal γ ∈ R, according to some
approximation criteria. The idea is then to make use of an inexact Jacobian
which can be block-diagonalized and, if the corresponding inexact Newton
process does not converge, either to reduce the step-size or to switch to the
exact iteration, that is, to make use of (11.12).

We adopt the optimization criterion

γ∗ −→ min
γ∈R

‖U − γ Iν‖2
F , (11.15)

where ‖ · ‖F is the Frobenius norm. This choice leads to an explicit formula
for the optimal parameter γ∗ and has been supported by several numerical
experiments.

In the special case α(y(t)) ≡ t (no delay case), we have α(U j) = tn +
cjhn+1, j = 1, . . . , ν. Hence, U = Iν and, consequently, γ∗ = 1, which can
also be considered a good approximation of the optimal parameter for those
cases when the step-size is much larger than the delay.

Example 11.1. Let us consider the Radau IIA 2-stage method, whose
tableau is given by

1
3

5
12 − 1

12

1 3
4

1
4

3
4

1
4

.

The jth row of the 2 × 2 matrix U is zero if α(U j) < tn, j = 1, 2. We have
that

U =
(
H(θ1) 0

0 H(θ2)

)
·
(
�11 �12
�21 �22

)
,

where �jk = �k(θj) and H(·) is the unit Heaviside function.
Since the function to minimize in (11.15) is quadratic with respect to γ,

the minimizer

γ∗ =
−9H(θ1) (−1 + θ1) θ1 +H(θ2) θ2 (−1 + 3 θ2)

4
is a global one.

Synthesis of the inexact Newton process
With the previous procedure we obtain an approximation of the Jacobian
(11.12) given by

J ≈ Jγ∗ = I ⊗M − hn+1A⊗Bγ∗ , (11.16)

where

Bγ =
∂f

∂u
+
∂f

∂ũ

(
η′(α0)

∂α

∂u
+ γIν

)
.
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By making use of the same transformation used to obtain Ĵ0 (see (11.14)),
we get

Ĵγ∗ = (hn+1)−1D ⊗M − I ⊗Bγ∗ , (11.17)

which has the same block-diagonal structure as Ĵ0.
The experimental results obtained on the examples from the test set by

Paul (1994) and on the test problems included in the code Radar5 have
shown that the use of the inexact Jacobian Jγ∗ allows us to obtain a more
efficient integration of problems with vanishing or small delays since, in
most cases, the use of the exact Jacobian J can be avoided.
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